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I like to see the mathematics of physics to be learnt in this way. I liked it
this way when I was a freshman. For example, I encountered frequently the term,
“algebra” in different contexts with much confusion what did they mean and if
they were the same thing. I was confused about a measure, a measurable set and
a measure space. I could not appreciate how a mapping is related to a parametric
description of a surface and the concept of a manifold. I could not see clearly, why
partitioning of a set with a relation is called an equivalence class and why a mapping
is called functional and not just a function. I did not know that (R/Z) and (R/Z)
are different, but the same notation is used for them. I liked, average students
with less commitment to mathematics could fall on the track to appreciate more
beautiful sides of the story sooner rather than later. It is not encyclopaedically
stupid. Yet, it tries not to leave a loop hole behind from those mathematics object
that one needs in studying physics, to look at them like a mathematician. Besides
these, a good study of physics implies that one recognises, in current technology,
what is the physical size of a magnet that produces a one Milli-Tesla or a ten
Milli-Tesla or a point one Tesla field; such things. Peter Jones

vii
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Foundations
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CHAPTER 1

Set Theory

I assume that the reader has a good understanding of set theory material stud-
ied in his first course in freshman calculus. Here we develop a brief course on some
advanced topics in set theory as it is taught to students of mathematics. We begin
it with familiarity with union and intersection on class of sets. Then we discuss
degenerate cases in sets which need to work with empty set.

1.1. Operations over a set

Definiteion 1.1.1. Union over a Set : Union over a set is the generalization of
union of sets, that fuses all members of a set together. These members are usually
sets which are constituted of other elements.

⋃A = {x ∣ ∃a ∈ A ∋ x ∈ a}

⋃∅ = ∅

Definiteion 1.1.2. Intersection Over a Set : Intersection over a set is general-
ization of intersection of sets that leaves out those elements common to all members
of that set. These members are usually sets which are constituted of other elements.

⋂A = {x ∣ ∀a ∈ A ⇒ x ∈ a}

In contrast to union, intersection over an empty set has no conclusive meaning and
we have to define the intersection for the empty set as,

⋂∅ ≜ ∅

3
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4 1. SET THEORY

1.2. Power Sets

I assume reader is already familiar with the idea of power set. To refresh that
idea I define,

Definiteion 1.2.1. Power Set : It is defined as the set of all subsets of any set
A. Precisely,

PA = {x ∣ x ⊆ A}.

And also we have,

P∅ = {∅}

Hence, if x ⊆ A we, then, can write x ∈P. Please pay attention to belongness
∈ symbol here. Also as an exercise note that ⋃PA = A.

Remark 1.2.1. We know what is a power set. Frequently we need to select certain collec-
tions of subsets of a set with certain structure out of the entire collection of subsets. For
example M which is a subcollection of P. That is, M ⊆ P. When we freely select an ar-
bitrary collection and like to impose certain structure to them we call that collection a free
collection and we show it by F . To impose the certain structure to this collection F , we
make an intersection over all those collections that have that structure and contain F as a
subset. Then we have the smallest collection shown say by F

∗ that is endowed with our
desired structure. We easily can verify that having any two sets in F

∗ then we have their
intersection in F

∗. Also if a set belongs to F
∗ then all of its subsets also belong to F

∗.

Exercise 1. Convince yourself that these three sets ∅, and {∅}, and {{∅}}
are different sets; none of them equal to others.

Exercise 2. Use one of the ⊆ or ∈ or both in place of dots in the following:

(1) {∅}⋯{∅, {∅}}
(2) {∅}⋯{∅, {{∅}}}
(3) {{∅}}⋯{∅, {∅}}
(4) {{∅}}⋯{∅, {{∅}}}
(5) {{∅}}⋯{∅, {∅, {∅}}}

Exercise 3. Simplify

(1) ⋂{PPP∅, PP∅, P∅, ∅}.
(2) ⋂{PPP {∅} , PP {∅} , P {∅}}.

Exercise 4. Let A be the set {{∅} , {{∅}}} Evaluate the following:

(a) PA (b) ⋃A (c) P⋃A (d) ⋃PA

Exercise 5. Show that for every set A we have, {∅, {∅}} ∈PPPA.
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1.3. EMPTY SET DEGENERATE CASES 5

1.3. Empty Set Degenerate Cases

It is interesting to chase the last remark of the previous section in building
further sets by getting the power sets of empty set, such as

PP∅ or PPP∅ or PPPP∅ ...

A clever way of making more sets is to assume that we have a beginning set S0 and
make a pyramid of sets using only S0 and power sets made thereby such that each
lower step includes the higher step, in this way

S0

S1 = S0 ∪PS0

S2 = S1 ∪PS1

⋮

Sn+1 = Sn ∪PSn

⋮

You can notice that,

S0 ⊂ S1 ⊂ S2 ⊂ ⋯ ⊂ Sn+1 ⊂ ⋯

Please note that the number of elements in each set Sn+1 is finitely limited. We
could continue building up any set with diabolically any number of elements but
still we have a finite set. To overcome that we make the following set,

Sω = S0 ∪ S1 ∪ S2 ∪⋯∪ Sn+1 ∪⋯

That set has countably infinite number of elements

Definiteion 1.3.1. Successor: For any set x, its successor x+ is defined as the
set

x+ = x ∪ {x}
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6 1. SET THEORY

Definiteion 1.3.2. Inductive Set: A set A is said to be inductive if it meets both
of these conditions:

(1) ∅ ∈ A.
(2) if x ∈ A then x+ ∈ A.

1.3.1. Natural Number System. The exciting application of above obser-
vation is building natural numbers system from the beginning empty set ∅. We
define,

0 = {}

= ∅

0-set has no element. Then

1 = 0+

= 0 ∪P0

= ∅ ∪ {∅}

= {∅}

= {0}

1-set has one element. Then

2 = 1+

= 1 ∪P1

= {∅} ∪ {∅, {∅}}

= {∅, {∅}}

= {0, 1}

2-set has two elements. And

3 = 2+

= 2 ∪P2

= {∅, {∅}} ∪ {∅, {∅, {∅}} , ∅, {∅}}

= {∅, {∅} , {∅, {∅}}}

= {0, 1, 2}

3-set has three elements. And finally,

⋮

n + 1 = n+

= n ∪Pn

= {0, 1, 2, 3, ⋯, n}

n-set has n elements. Here again we can make the infinite set of natural numbers
shown by ω.
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1.4. MAPPINGS 7

ω = 0 ∪ 1 ∪ 2 ∪ 3 ∪⋯ ∪ n ∪⋯

which is an inductive set.

Definiteion 1.3.3. Arithmetic Addition : Addition of two natural numbers m
and n is shown by symbol + and defined as,

m + n ≜m ∪ n.

Arithmetic multiplication is just an addition repeated many times.

m.n ≜m ∪m ∪ ⋅ ⋅ ⋅ ∪m
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

for n times.

1.4. Mappings

An ordered pair is a set theory concept defined carefully to be constructed out
of two elements of sets such that if the position of elements in their arrangements
changes their assigned meaning changes. An ordered pair of two elements x ∈ X
and y ∈ Y is shown with notation (x, y). More concisely,

Definiteion 1.4.1. Ordered Pair : An ordered pair is a set such that,

(1) Generally (x, y) ≠ (y, x) for x ∈ X and y ∈ Y .
(2) If (x, y) = (v,w) for some x , v ∈ X and some y , w ∈ Y , then x = v and

y = w.

It is interesting to know that in abstract mathematics an ordered pair (x, y) is
defined as equal to the set {{x} ,{x, y}} such that it satisfies uniquely the require-
ments of the above definition (proposed by K. Kuratowski, 1921).

Remark 1.4.1. Please look at these interesting corollaries. You can convince yourself.

⋃(x, y) = {x, y}

⋃(X × Y ) =X ∪ Y

⋂(x, y) = {x}

⋂(X × Y ) =X

Definiteion 1.4.2. Cartesian Products : Cartesian product of two sets X and
Y is the set of all ordered pairs {∀ (x, y) ∣x ∈X and y ∈ Y }. In particular we can
define the Cartesian product of X ×X.
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8 1. SET THEORY

Remark 1.4.2. Cartesian product of more than two sets such as X, Y , and Z can be defined
in a similar fashion with an important warning: this product is not generally associative,
except that we have Cartesian product of the same set as follows.

We can extend the Cartesian product to X ×X ×⋯ ×X ×X such that we can
define Xn for a set X .
There are degenerate cases worth of some attention.�

(1) The productX×∅. This is equal to the set of singletons (x, x). To see that
we write, (x, x) = {{x} ,{x,x}} = {{x} ,{x}} = {{x}}. Now, one element
of product X×∅ can be written as {{x} ,{x, }} = {{x} ,{x}} = {{x}}. We
left a blank space after x, to show that we have selected an element from
empty set as the second component of the ordered pair. We can call this
as an ordered single and show it by (x). Note that this is {{x}} and is
different from {x}.

(2) The product ∅ × ∅. This is considered special case of the above and is
equal to the set {{ }} = {∅}. We know that this is not an empty set
anymore and is different from just an empty set { } = ∅. We can call it
an ordered empty (in some contexts [13] it is called an empty list) and
show it by ( ) or in some contexts by Λ.

(3) The product ∅×X . This, if you prefer, can only be defined as the empty
set ∅. We cannot find anything out of the set {∅, {x}}. It has not any
meaning.

(4) In Xn is it possible to have n = 0?
Answer is affirmative. We define it as the set of all ordered empties,
X0 ≜ {( )}[7]. Hence, X0 = {∅ ×∅}. We show X0 = {Λ}, and we call it
empty product. This Λ set notation later will get other usages.

(5) In Xn is it possible to have n = 1?
Answer is affirmative. We define X1 = {(x)}, the set of all ordered singles.
Hence, X1 = X × ∅. Please differentiate X1 with X . That is X1 ≠ X . If,
for example, X = {a, b, c} then X1 = {(a), (b), (c)}.

(6) In Xn is it possible to have n =∞ countably?
Answer is again affirmative. We study such products later.

(7) In Xn is it possible to have n =∞, but uncountable?
Answer is again affirmative. We later define the Cartesian product for
any value of n.

Definiteion 1.4.3. Relation : A relation R from a set X to another set Y is
just any subset of X × Y . When x ∈ X is related through R to y ∈ Y we show it as
xRy, or (x, y) ∈ R.

Note that the subset mentioned in above definition is selected on an arbitrary
appropriateness. That is, any arbitrary selection of any subset of X × Y is said to
be a relation from X to Y .

Example 1.4.1. Incidence (in Projective Geometry): Assume P is the set of
points and L is the set of lines in a Euclidean plane (more beautifully in a division
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1.4. MAPPINGS 9

ring R), a subset of P × L is called an incidence if that relation satisfies set of
axioms of projective geometry, as they follow.

(1) L ≠ ∅ (we have, at least, one line).
(2) ∃a, b, c ∈ P , ∋ a, b, c ∈ l, ∀l ∈ L (on each line we have at least three points).
(3) ∀l ∈ L∃p ∈ P ∋ p ∉ l (taking any line, we have at least one point not on

that line).
(4) ∀l ∈ L∃p ∈ P ∋ p ∉ L (there is one point not belonging to any line; such a

point is called an ideal point).
(5) ∀l1 and l2 ∈ L∃p ∈ P ∋ p ∈ l1 and p ∈ l2 (any two lines intersect at a point,

even if you believe those lines are parallel; they might intersect at the ideal
point in this case).

Definiteion 1.4.4. Graph of a Relation : Assume R ⊂X×Y is a relation. Then
the set {(x, y) ∣x ∈X and y ∈ Y } is called the graph of R.

Mapping is a relation R from a set X to another set Y , where for each element
of X we assign only one unique element in Y . Instead of letter R, we prefer to
usually use the letter f for a mapping. More concisely,

Definiteion 1.4.5. Mapping : A mapping f of set X to set Y is a relation
from X to Y such that ∀x ∈ X there is only a unique y ∈ Y that satisfies xfy or
(x, y) ∈ f . We use notations f ∶ X Ð→ Y , reads as mapping f from X to Y , and
x ↦ y reads x maps to y for showing a mapping. Finally, we write y = f (x) and
read it as y is the map of x under f . Usually we write them in a stacked form as,

f ∶X Ð→ Y

x↦ y

y = f (x)

The last notation is also read as y is the value of f at x. In, yet another wording
we say f takes x to y. We say y is the image of x under mapping f and x is a

pre-image of y with respect to f .

A mapping frequently is termed as a function. We keep the usage of term
”function” for mappings to the set of real numbers R, or to the set of complex

numbers C, or their subsets all through this book. Hence we call a real valued

or a complex valued mapping a real function or a complex function, respectively.
Later we see that a mapping from a vector space to its scalar field is usually called
a functional. This term is kept as it is, due to historical usage, though it could
be avoided.

Remark 1.4.3. Unique : To clear the meaning of unique in definition of mapping we can,
alternatively say that if we take two different elements y1 such that y1 = f (x1) and y2 such

that y2 = f (x2) and we find out that y1 ≠ y2 then to have a mapping it is necessary that
x1 ≠ x2. If any point x in X maps to more than one point y in Y then f is not a mapping
anymore. It will be a relation. This is how we check if a relation is a mapping. Note that it
is possible in a mapping that different x’s in X map to the same y in Y , inverse is not true.
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10 1. SET THEORY

To summarize, assume
y1 = f (x1) and y2 = f (x2) then,

if y1 ≠ y2 then x1 ≠ x2,

alternatively,

if x1 = x2 then y1 = y2;

on the other hand,

if y1 = y2 then it could be that x1 ≠ x2,

alternatively,

if x1 ≠ x2 then it could be that y1 = y2;

See Figure 1.1

Definiteion 1.4.6. Domain of a Mapping : Assume f ∶ X Ð→ Y is a mapping,
then the set X is defined as the domain of the mapping f.

x ✲ y1 x1 ✲ y

(a) y2

✲
x2

✲

(b)

Figure 1.1. (a) cannot be a mapping. (b) is a mapping.

Definiteion 1.4.7. Co-domain of a Mapping : Assume f ∶ X Ð→ Y is a map-
ping, then the set Y is defined as the co-domain of the mapping f.

In a mapping f the set of those points y ∈ Y such that y is the image of some
points x ∈ X constitute a subset A ⊆ Y . This subset is the range of the mapping.
More concisely, we have,

Definiteion 1.4.8. Range of a Mapping : Assume f ∶ X Ð→ Y is a mapping,
then the set ∀y ∈ Y such that ∃x ∈ X and y = f (x) is a subset A ⊆ Y . This subset
is the range of the mapping and is shown by notation f [X ]. See Figure 1.2

Range of a mapping f is also called the set of values of the mapping f .
In a mapping we have three objects to recognise, domain, range and f . The latter,
f is also a set. We have, f ⊂X × Y . Or more concisely,

f = {(x, y) ∣y = f(x)where x ∈ X and y ∈ Y } .

Definiteion 1.4.9. Image of a Mapping : Assume f ∶ X Ð→ Y is a mapping,
and E ⊆ X then the set ∀y ∈ Y such that x ∈ E and y = f (x) is a subset S ⊆ Y .
This subset is the image of the set E and is shown by notation f [E].
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1.4. MAPPINGS 11

X
Y

f[X]
f

Figure 1.2. Range of Set X under Mapping f into Set Y .

It is necessary to recognise the image of a mapping from the graph of a mapping.

Definiteion 1.4.10. Graph of a mapping : This set frequently is known as the
graph of the mapping and is described as,

graph(f) = {(x, f(x)) ∣x ∈ X and f(x) ∈ Y } .
Definiteion 1.4.11. Inverse Image of a Mapping : Assume f ∶ X Ð→ Y is a

mapping, and S ⊆ Y then the set ∀x ∈ X such that y ∈ S and y = f (x) is a subset
E ⊆ X . This subset E is the inverse image of the set S and is shown by notation
f −1 [S ]. We frequently, call f −1 [S ] as the pre-image of S.

If y ∈ Y then you should recognize between x = f −1 (y) where x ∈ X and
E = f −1 [{y}] where E ⊆ X . Though it is true that frequently f −1 (y) gives more
than one x ∈ X and some people might have that in mind when they interchangeably
use the same notation for both f −1 (y) and f −1 [{y}].
You might notice that f−1 is not necessarily a mapping for itself, and it could be
only a relation not a mapping.

Example 1.4.2. Assume the set X = {∅, {∅}} and the set Y = {a, b}. We
define f ∶ X → Y as f = {(∅, a), ({∅} , b)}. Please check that f [{∅}] = {a}, and
f ({∅}) = b.

Definiteion 1.4.12. Surjective Mappings : Assume f ∶ X Ð→ Y is a mapping.
If for each y ∈ Y we can find at least one (i.e., one or more than one) elements
x ∈ X such that y = f (x) then we say the mapping f is surjective. A surjective
mapping is called a surjection.
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12 1. SET THEORY

In other words, in a surjective mapping the range of f coincides with the
codomain Y .

Definiteion 1.4.13. Onto Mapping : This is another term for a surjective

mapping.

We say a surjection maps X onto the set Y , and if possible we write f ∶ X
ontoÐÐ→

Y or f ∶ X
surÐ→ Y or f ∶ X ↠ Y . When a mapping is not known to be surjective

we say f maps X into the Y , like this f ∶ X
intoÐÐ→ Y .

Remark 1.4.4. We understand that the range of f is the image set f [X ]. Hence in a
surjective mapping, we have Y = f [X ].

Remark 1.4.5. Further it is always possible to restrict the codomain of a mapping such that
the mapping f converts to a surjective mapping. This restriction is different with restriction
of mapping in its domain. The surjective mapping then will be f ∶ X Ð→ f [X ] ⊆ Y . Still,
we use the same notation f for our surjective mapping produced in this way.

This restriction later will be of some use in understanding topological embed-
ding.
To show that a mapping is surjective we should take each y in the co-domain Y and
check if there exists an x in domain X such that we can ensure that the selected y
is the image of that x. We express this test in mathematical form as,

∀y ∈ Y ∃x ∈X ∋ y = f (x)

Definiteion 1.4.14. Saturated Sets : Assume f ∶ X Ð→ Y is a surjection and
A ⊂X. A is called a saturated subset of X with respect to f if A contains every
subset f−1[y] that intersects with A.

In another word, A is equal to inverse image f−1[B] of some subset B ⊂ Y .

Remark 1.4.6. If A is not saturated with respect to f then generally, A ⊂ f−1[f[A]]. But
for a saturated subset A we have A = f−1[f[A]].

Remark 1.4.7. Later we see that if f is a continuous map, a saturated set helps to define
a quotient map and a quotient topology.

Definiteion 1.4.15. Injective Mappings : Assume f ∶ X Ð→ Y is a mapping.
If for each y ∈ Y we can find only one (i.e., not more than one) elements x ∈ X
such that y = f (x) then we say the mapping f is injective. An injective mapping
is called an injection.

Remark 1.4.8. In an injective mapping f ∶ X Ð→ Y if x1 ≠ x2 when x1, x2 ∈ X then we have
f (x1) ≠ f (x2). This is a way that you can check a mapping is an injection. See Figure 1.3

Definiteion 1.4.16. One-one Mapping : Sometimes is termed as one-to-one
mapping, this is another term for an injective mapping. We show an injection as

f ∶X
injÐ→ Y or f ∶ X

1−1Ð→ Y or f ∶ X ↣ Y .

An idea similar to saturated sets can be explored to defining co-saturated sets.
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1.4. MAPPINGS 13

x1

x2 ✲ y

✲

⋮

xn

✲

Figure 1.3. This cannot happen in an injective mapping.

Definiteion 1.4.17. Co-saturated Sets : Assume f ∶ X Ð→ Y is an injection
and B ⊂ Y . B is called a co-saturated subset of Y with respect to f if B contains
every subset f[{x}] = {f(x)} that intersects with B where x ∈ A and A ⊂X.

In another word, B is equal to image f[A] of some subset A ⊂X .

Remark 1.4.9. If B is not co-saturated with respect to f then generally, ff−1[B]⊂ B. But
for a saturated subset B we have ff−1[B] = B.

Remark 1.4.10. Later we see that if f is a continuous map, a co-saturated set helps to
define an induced map and an induced topology.

Saturated and co-saturated sets help us to keep in mind properties of mappings
defined on the intersection of sets with respect to the intersection of their images
and also inverse image of intersections.

Remark 1.4.11. Assume f ∶ X Ð→ Y and A ⊂ X and B ⊂ X and E ⊂ Y and F ⊂ Y then,
generally we have,

(1) if A ⊆ B then f(A) ⊆ f(B)
(2) f(A ∪B) = f(A) ∪ f(B)
(3) f(A ∩B) ⊆ f(A) ∩ f(B)
(4) f(A −B) ⊇ f(A) − f(B)
(5) f(C(A)) ⊇ C(f(A))
(6) f(A −B) ⊆ f(A)
(7) if E ⊆ F then f−1(E) ⊆ f−1(F )
(8) f−1(E ∪ F ) = f−1(E) ∪ f−1(F )
(9) f−1(E ∩ F ) = f−1(E) ∩ f−1(F )

(10) f−1(E − F ) = f−1(E) − f−1(F )
(11) f−1(C(E)) = C(f−1(E))

Now we define a bijective mapping where all subsets of domain and co-domain
are saturated and co-saturated respectively for the mapping.

Definiteion 1.4.18. Bijective Mappings : A bijective mapping is one that is both
a surjective mapping and an injective mapping. A bijective mapping is also is said
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14 1. SET THEORY

to be a bijection. We show an injection as f ∶ X
biÐ→ Y or as f ∶ X

1−1ÐÐ→
onto

Y or

f ∶X ↔ Y .

Frequently a bijection might be referred as a one to one correspondence.
One important bijection on a finite set is permutation.

Definiteion 1.4.19. Permutation : A bijection σ on a finite set S is said to be

a permutation on S. Hence, σ ∶ S
biÐ→ S.

Definiteion 1.4.20. Operator : Operator is a mapping where domain is a Carte-
sian product of a set X ×X and co-domain is the set X itself. An operator mapping
is called an operation.

Definiteion 1.4.21. n−ary Operator : Is defined as a mapping from Cartesian
product Xn into the set X. That is, f ∶ Xn Ð→X.

Remark 1.4.12. Degenerate Case : It is worth noting the degenerate case of n = 0, where,
you can remember, Xn defined to be X0 ≜ {( )}. In this case we assume f ({∅}) is a member
of X. This operator, f ∶ X0

Ð→ X is called a nulary operator. An examples of a nulary
operator is the 0 element and the 1 element in a Boolean algebra (Section 2.4).

Remark 1.4.13. Similarly, we have unary operator f ∶ X1
Ð→ X. An example of a unary

operator is negation of an integer in additive group of integers, as later we study.

In a unary operation each element belonging to domain appears as a singleton,
say, {x} while the image of that element is just a member of the co-domain, i.e.,
x ∈X .

Definiteion 1.4.22. Pre-set of a Set : Assume X and Y are sets. Then the set
of all mappings from X into Y , that is, {∀f ∣ f ∶ X Ð→ Y } is said to be the pre-set
of set X . We show the pre-set by XY notation.

Definiteion 1.4.23. f −dual Set of a Set : Assume X is a set. Then the set of
all mappings from X into X , that is, {∀f ∣ f ∶ X Ð→ X } is said to be the f −dual set
of the set X . We show this set by X ∗f .

This X ∗f is the same as pre-set XX .
We should study some degenerate cases for mappings before we could move further.

(1) Mapping f ∶ ∅Ð→ Y . You can reason that this mapping is just the empty
set f = ∅

(2) Mapping f ∶ ∅ Ð→ ∅ . We can decide that this one is a special case of
above and hence, f = ∅.

(3) Mapping f ∶ X Ð→ ∅ . This has no meaning. We do not define a mapping
with non-empty domain and an empty co-domain. It means as if you
have a mapping and then you do not assign anything to members of its
domain. But mapping means assigning something to domain. Hence a
contradiction.
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1.4. MAPPINGS 15

(4) Pre-set ∅ Y . This has only one member. So, ∅Y = {∅}.
(5) Pre-set ∅ ∅ . This is special case of above and ∅∅ = {∅}.
(6) Pre-set X∅ . We might decide that this set is just an empty set, i.e.,

X∅ = ∅.

Definiteion 1.4.24. Power Set Mapping : Assume f ∶ X Ð→ Y is a mapping.
We can define a mapping shown as 2f from power set 2Y to power set 2X , that is,
2f ∶ 2Y Ð→ 2X such that if S ∈ 2Y then 2f (S) = f −1 (S).

Definiteion 1.4.25. Restriction of a Mapping : Assume mapping f ∶ X Ð→ Y
is defined. Then if we have a subset A ⊆ X we can define the mapping g ∶ AÐ→ Y
such that g (x) = f (x) ,∀x ∈ A as the restriction of f to the subset A. We show

restriction of f to A by f ∣A ∆= g notation.

Definiteion 1.4.26. Extension of a Mapping : Assume mapping f ∶ X Ð→ Y is
defined. Then if we have a set Ω ⊇ X we can define the mapping g ∶ Ω Ð→ Y such
that g (x) = f (x) ,∀x ∈ X as the extension of f to the set Ω. We show extension of
f to Ω by f ∣Ω notation.

Note that g needs to be consistent with f only on their common domain X .

Definiteion 1.4.27. Composition of Mappings : Assume X and Y and Z are
three sets and W ⊆ Y . Further, consider mappings f ∶ X Ð→ Y and g ∶W Ð→ Z .
If the range f [X ] of f has common elements with domain W of g, that is, if
f [X ] ∩W ≠ ∅ then we can define composite mapping of f and g shown as g ○ f
or simply gf by gf ∶ X Ð→ Z .

Hence f takes x to the y and then g takes y to the z, such that overall gf takes
x to the z. To this end, g is restricted to f [X]∩W as its domain for composition.

Definiteion 1.4.28. Submodulus Set : Assume mapping f ∶ X Ð→ X is defined.
Then if f [X] ⊂X, we say X is submodulus set of f .

Definiteion 1.4.29. Modulus Set : Assume mapping f ∶ X Ð→ X is defined.
Then if f [X] =X, that is if f is a surjection, we say X is modulus set of f .

Definiteion 1.4.30. Identity Mapping : assume mapping id ∶ X Ð→ X is defined
such that, for x ∈ X we have x z→ x , or id (x) = x then id is called the identity
mapping. We show the identity mapping on a set X by idX .

Definiteion 1.4.31. Inclusion Mapping : Assume we have a subset A ⊆ X then
the restriction of the identity mapping id ∶ X Ð→ X to the subset A, that is idX ∣A
is said to be the inclusion mapping of A and is shown as ιA.

Definiteion 1.4.32. Embedding Mapping : Assume we have a set Ω ⊇ X then
the extension of the identity mapping id ∶ X Ð→ X to the set Ω, that is idX ∣Ω is
said to be the embedding mapping of X into Ω. X is said as embedded in Ω.
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16 1. SET THEORY

Frequently, embedding might be spelled as imbedding. It is better not to
contrast this two different spelling as different concepts. Note that this 1.4.32 is
one basic interpretation of embedding. This definition opens the way for later and
further understanding of more sophisticated usage of the notion.

Remark 1.4.14. We notice that we can have two types of restriction and two types of
extension for a mapping f ∶ X Ð→ Y .

(1) Restriction of domain X .
(2) Extension of domain X .
(3) Restriction of co-domain Y .
(4) Extension of co-domain Y .

Often it is helpful to show composition of mappings in diagrams. It is gener-
alization of arrow notation we already have used. For example, assume we have
composition gf of g and f , with restriction we already imposed on the domain of
g. We can show it by the diagram shown in Figure 1.4.

X
f ✲ Y

g ✲ Z
k ✲ W

V

i

❄

j

✲
h

✲

Figure 1.4. A Commutative Diagram.

You notice that from any domain to another co-domain there is one or more than
one path consisting of one or many mappings. For example from X to V we have
h or alternatively, through Y we have the composition if . From X to Z we have
three paths gf and jh and jif .

Definiteion 1.4.33. Commutative Diagrams : A commutative diagram shows
equivalent composition of mappings on equivalent paths.

Axiom 1. Axiom of Choice : For any relation R from a set X to another set
Y there is a mapping f ∶ X Ð→ Y .

Definiteion 1.4.34. Inverse Mapping : Assume f ∶ X
injÐ→ Y . Then the mapping

g ∶ f [X ] injÐ→ X is called the inverse mapping of mapping f .

We show the inverse mapping of f with f−1. You may notice that f is also

inverse of the mapping f −1 ∶ f [X ] injÐ→ X .

Remark 1.4.15. It can be easily observed that f ○ f−1 = idX and also f−1 ○ f = idf[X].

We can have the following diagram.
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1.4. MAPPINGS 17

Definiteion 1.4.35. Invertible Mapping : A bijective mapping is said to be an
invertible mapping.

Definiteion 1.4.36. Gluing Mapping : Assume two mappings, f ∶ X Ð→ Z and
g ∶ Y Ð→ Z agree on the intersection V =X ∩ Y in the sense that f(v) = g(v); ∀v ∈
V . Consider the mapping φ ∶ X ∪ Y Ð→ Z such that, φ(x) = f(x); ∀x ∈ X and
φ(y) = g(y); ∀y ∈ Y . Then we say that φ is the gluing mapping or better to say, φ
is formed by gluing f and g, sometimes shown as f ∪ g.

Definiteion 1.4.37. Iteration of Mappings : Assume f ∶ X
injÐ→ X . Then X is a

submodulus set with respect to f . We can define iterations of f by induction as,

f0(x) = x, and fn+1(x) = f ○ fn(x), ∀x ∈ X and ∀n > 0.

If f is a bijection then X is a modulus set with respect to f and we can extend
this definition to negative integers, as well, by defining,

fn−1(x) = f−1 ○ fn(x), ∀x ∈X and ∀n ≤ 0.

Further we can define,

fn+m(x) = fm ○ fn(x), ∀x ∈X and ∀n, m ∈ Z.
Remark 1.4.16. Please remember following definition from basic calculus.

(1) Identity Map: is a map f ∶X Ð→X such that x↦ x for all x ∈X; that is, f (x) = x.
(2) Constant Map: is a map f ∶X Ð→ Y such that there is a fixed c ∈ Y that x ↦ c for all

x ∈X; that is f (x) = c.

Definiteion 1.4.38. Function : A function is a mapping from any set X to the
set of real numbers R or real n−tuples Rn. That is f ∶ X Ð→ Rn ∀n ∈ N.

Definiteion 1.4.39. Trivial Function : Is a constant mapping function f ∶ X Ð→
R such that f (x) = 0.

In later contexts of group theory or vector spaces this might be called trivial map-
ping or trivial functional.

X
f ✲ Y f[X] f−1 ✲ X

X

f−1

❄

id
X

✲

f[X]
f

❄

✛
id
f
[X
]

Figure 1.5. Commutative Diagrams for Inverse Mappings.
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18 1. SET THEORY

Definiteion 1.4.40. Kernel of a Function : Kernel is the set of all element in
X whose images in R is the single element zero 0 ∈ R. In other words, kernel is the
pre-image f−1 [{0}] of singleton {0} ⊆ Rn. See, Figure 1.6

Later we define kernel for mappings into the certain other algebraic structures
besides R when there is a neutral element 0 defined on them.

Kernel

X

R

f

f

0

f

Figure 1.6. Kernel of function f is everything on red boundary
and inside it.

Example 1.4.3. Forms: Forms are examples of functions on a tangent space.
They act on a vector in the tangent space and give a real number attributed or
attached to that vector.

Example 1.4.4. Co-vectors: Corresponding to a vector in a tangent space, it
is possible to make a form from components of that vector. This form is called a
co-vector or a row vector, in contrast to a column vector. A co-vector, like a form,
is a function.

Definiteion 1.4.41. Product of Mappings: Let f ∶ X Ð→ V and g ∶ Y Ð→ W

be two mappings. Then we can define a mapping f × g ∶ X × Y Ð→ V ×W as the
product of these two mappings in such a way that,

(f × g)(x, y) = (f (x) , g (y)) = (u, v) where u = f (x) , and v = g (y) .
Figure, 1.7
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1.4. MAPPINGS 19

✲ ✕

X

V

f
W

Y

g

(a)

X

Y

V

W

X × Y

f × g

V ×W

(b)

Figure 1.7. Product of two maps.

�

You might notice that we were quite terse on this definition. Well, one should
be cautious on using this definition. But delving on it will ease the way for under-
standing other complicated ideas such as the product of measures, bilinear map-
ping, tensor product, and n−forms, (topological) quotient map, cotangent space,
and “pull-back.” In particular, there are situations where one decides that could be
a two variables mapping, instead of product of two mappings.
In the same way that a mapping from a set X to the set R has its own name as a
function, a map from a subset of R to a set X has a wide usage as a path mapping.
We have other types of combination of mappings such as f ∨ g for join of the map-
pings and f ∧ g for the meet of the mappings and objects such as f+ and f− that
will be discussed on their own places, if necessary.

Definiteion 1.4.42. Path Mapping : A mapping f ∶ [a, b]Ð→X is called a path
mapping for [a, b] ⊂ R.

This is the first encounter with the idea of path. Actually a path needs to have
more restrictions to be well-defined and has its own context.
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CHAPTER 2

Structures on sets

2.1. Relations

Assume R is a relation on a set X . Then the relation is called a,

Definiteion 2.1.1. Reflexive Relation : If and only if for each x ∈ X we have
xRx .

An example of such relation is less than or equal relation (≤) on the set of ,
say integers. For any integer x we have x ≤ x .

Definiteion 2.1.2. Irreflexive Relation : If and only if there is not any x ∈ X
such that xRx holds.

For example the relation less than (<) on the set of integers Z does not hold.
For any integer x it is not true that x < x .

Definiteion 2.1.3. Symmetric Relation : If and only if xRy implies yRx for
all x, y ∈X.

An example is the equality relation x = y

Definiteion 2.1.4. Anti-symmetric Relation: If and only if xRy does not imply
yRx but if xRy and yRx both hold then x = y.

A familiar example of anti-symmetric relation is the less than (<) relation x < y.

Definiteion 2.1.5. Transitive Relation: If and only if two relations xRy and
yRz imply xRz .

Again the less than (<) relation x < y satisfies transitivity requirement as a
relation.

Definiteion 2.1.6. A-transitive Relation: If and only if xRy and yRz imply
x /Rz , where slashed /R means no such a relation established.

21
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22 2. STRUCTURES ON SETS

Definiteion 2.1.7. Trichotomy Relation : If and only if only one of the three
relations xRy, yRx or x = y holds.

Definiteion 2.1.8. Equivalence Relation on X: This relation is reflexive, sym-
metric and transitive.

Example 2.1.1. Degenerated Case: ∅ is an equivalence relation on ∅.

Definiteion 2.1.9. Order Relation on X: This relation is reflexive, antisym-
metric and transitive.

Example 2.1.2. Degenerated Case: ∅ is an order relation on ∅.

Definiteion 2.1.10. Strict Order Relation on X: This relation is irreflexive,
anti-symmetric and transitive.

Example 2.1.3. Degenerated Case: ∅ is a strict order relation on ∅.

2.2. Order in Sets

The order relation on sets is shown by the usual notation ≤ instead of R.

Definiteion 2.2.1. Dominant Set : Assume we have sets X and Y . We say
Y is dominant over X, if there exists an injection f from X into the Y . That is,

f ∶X
injÐ→ Y . We show this relation by X ≼ Y .

If Y is dominant over X then we have f[X] ⊆ Y and card(X) ≤ card(Y ).
Definiteion 2.2.2. Preordered Sets : A set is preordered when there is a reflexive

and transitive relation on some of the elements in the set.

Definiteion 2.2.3. Partially Ordered Sets : A set is partially ordered when there
is a reflexive and antisymmetric, and transitive relation on some of the elements
in the set.

Definiteion 2.2.4. Totally (or Linearly) Ordered Sets : A set is totally ordered
when there is a reflexive and antisymmetric, and transitive relation on all of the
elements in the set.

Example 2.2.1. Natural Numbers : Subset relation in sets is a reflexive and
antisymmetric, and transitive relation on all the subsets of a particular set. From
the section 1.3.1 we can remember that there is a subset relation for any pair of
natural numbers. For example, 5 ⊆ 17, that creates a natural order among elements
of N. We can see that all three necessary conditions are satisfied by this relation.
We show this order relation by ≤; hence, 5 ≤ 17.

Definiteion 2.2.5. Chain : Any totally ordered subset of a partially ordered set
is a chain.
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2.3. LATTICE AND WELL ORDERING 23

Definiteion 2.2.6. Notation : Assume we have ordered set X ordered with re-
lation R, we show it by notation O (X, R).

Definiteion 2.2.7. Similarity : Assume O (X,R) and O (Y,S) are ordered sets.
The mapping f ∶ X Ð→ Y is said to be a similarity if from the relation x1Rx2
∀x1, x2 in domain X, we have f (x1)Sf (x1).

Definiteion 2.2.8. Order Preserving Mapping : Let f ∶ X Ð→ Y and ∀x, ξ ∈
X, x ≤ ξ then f (x) ≤ f (ξ).

You notice that order preserving mapping is a similarity. This will be of use
when we study notion of embedding in context of universal algebra.

2.3. Lattice and Well Ordering

Assume A is an ordered subset of an ordered set Ω. An element x in Ω is a
lower bound for elements of A whenever for all elements a in A we have x ≤ a. In
mathematical notation we write

Definiteion 2.3.1. Lower Bound : Let A ⊆ Ω, then an elementx ∈ Ω is a lower
bound for A whenever ∀ a ∈ A we have x ≤ a.

Assume A is an ordered subset of an ordered set Ω. An element x in Ω is an
upper bound for elements of A whenever for all elements a in A we have a ≤ x . In
mathematical notation we write

Definiteion 2.3.2. Upper Bound : Let A ⊆ Ω, then an element x ∈ Ω is an
upper bound for A whenever ∀ a ∈ A we have a ≤ x .

Assume x and y are two elements belong to an ordered set Ω. We say y covers
x if x ≤ y, and additionally you cannot find a z that comes between x and y in their
order. In mathematical notation we write

Definiteion 2.3.3. Cover : Let Ω be a partially ordered set and x , y ∈ Ω. We
say y covers x whenever x ≤ y and there does not exist z such that x ≤ z ≤ y.

Definiteion 2.3.4. Least Upper Bound (Supremum): Let A ⊆ Ω, then an
element x ∈ Ω is the least upper bound for A whenever x is an upper bound forA
and if y is another upper bound for A then x ≤ y .

Definiteion 2.3.5. Greatest Lower Bound (Infimum): Let A ⊆ Ω, then an
element x ∈ Ω is the greatest lower bound for A whenever x is a lower bound forA
and if y is another lower bound for A then y ≤ x .

Definiteion 2.3.6. Maximum (Greatest) element : Let A ⊆ Ω; further, if x ∈ Ω
is the least upper bound of A then x ∈ A .
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24 2. STRUCTURES ON SETS

The following two definitions establishes an order on a two elements subset.

Definiteion 2.3.7. Minimum (Least) element : Let A ⊆ Ω; further, if x ∈ Ω is
the greatest lower bound of A then x ∈ A .

Definiteion 2.3.8. Join : Least upper bound of a set with two members a and
b is called join of a and b we show it by a ∨ b .

Definiteion 2.3.9. Meet : Greatest lower bound of a set with two members a
and b is called join of a and b we show it by a ∧ b .

Definiteion 2.3.10. Directed Partially Ordered Sets: This is a set, where every
pair of elements have an upper bound.

Definiteion 2.3.11. Well-ordered Sets : This is a set, where every non-empty
subset has a minimum (least) element.

Example 2.3.1. Set of Natural Numbers : This set is a well ordered set.

Definiteion 2.3.12. Lattice : A lattice L is a partially ordered set such that,

(1) Every pair of elements of L have a joint and a meet (informally, every
two elements are comparable as if they are next to each other).

(2) There are element 0 ∈ L and element 1 ∈ L such that for every element
a ∈ L we have 0 ≤ a ≤ 1

Definiteion 2.3.13. Complement : Assume L is a lattice, and a ∈ L. Now,
consider you can find a′ ∈ L such that it satisfies the following conditions:

(1) a′ ∨ a = 1 (informally, the bigger is 1).
(2) a′ ∧ a = 0 (informally, the smaller is 0).

Then we say a′ is the complement of a. We use symbol a
′

to show complement
of element a ∈ L.

It is trivial to see (by swapping the place of a and a′ in above) that if a′ is the

complement of a, then a is also complement of a′; that is, (a ′)′ = a
Definiteion 2.3.14. Orthocomplemention Mapping: This is defined as mapping

ω on lattice L as ω ∶ L Ð→ L such that for any a ∈ L we have a ↦ a
′

, that is, it

maps element a ∈ L to its complement a
′

Further,

(1) (a ′)′ = a.
(2) if a ≤ b then we have b

′

≤ a
′

.

Definiteion 2.3.15. Orthocomplemented Lattice : A lattice with an orthocom-
plemented mapping defined in it is called orthocomplemented
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2.5. PARTITION 25

Definiteion 2.3.16. Complete Lattice : When every non-empty subset of a lat-
tice have a least upper bound and a greatest lower bound, the lattice is complete.

Definiteion 2.3.17. Distributive Lattice : regarding join and meet element for
comparing three elements of a lattice L

(1) a ∧ (b ∨ c ) = (a ∧ b ) ∨ (a ∧ c )
(2) a ∨ (b ∧ c ) = (a ∨ b ) ∧ (a ∨ c )

2.4. Boolean Algebra

Definiteion 2.4.1. Boolean Algebra : An orthocomplemented, distributive lattice
is called a Boolean algebra.

Definiteion 2.4.2. Infinite Distributive :

(1) a⋀S = ⋀{a ∨ b ∣ b ∈ S}
(2) a⋁S = ⋁{a ∧ b ∣ b ∈ S}

Definiteion 2.4.3. Locale/Frame : Is a lattice with infinite distributive property.

2.5. Partition

Assume Ω is a set and M is a collection of subsets of Ω.

Definiteion 2.5.1. Filter or Up-set : M is a filter in Ω if for any A ∈M and
A ⊇ B then B ∈M

Definiteion 2.5.2. Ideal or Down-set : M is an ideal in Ω if for any A ∈M and
A ⊆ B then B ∈M

Definiteion 2.5.3. Base B: B is a base for M if for any A ∈M there is B ∈B
such that B ⊆ A

Definiteion 2.5.4. Refined Family : A collection N is said to refine M or to be
a refinement of M if for every N ∈N we have an M ∈M such that N ⊆M .

Definiteion 2.5.5. Complete Family : For any A ∈M and B ∈M then A∩B ∈M

Definiteion 2.5.6. Anti-chain : For any Ai ∈M and Aj ∈M then Aj ⊊ Ai

Definiteion 2.5.7. Chain : For any Ai ∈M and Aj ∈M then either Ai ⊆ Aj or
Aj ⊆ Ai is correct.
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26 2. STRUCTURES ON SETS

Definiteion 2.5.8. Maximal Chain : C is a maximal chain if for any other
chain C

′ if C ⊆ C
′ then C = C

′

Definiteion 2.5.9. Partition (Finite): The class of sets {Aj } such that Ai ⊆
Ω; i = 1, 2, ⋯, n and Ai ∩Aj = ∅ when i ≠ j and Ω = ⋃n

i=1 Ai .

Definiteion 2.5.10. Partition (Countable): The class of sets {Aj} such that
Ai ⊆ Ω; i = 1, 2, ⋯ and Ai ∩Aj = ∅ when i ≠ j and Ω = ⋃∞i=1Ai .

Definiteion 2.5.11. M−partition : The class of subsets {Ai} such that

(1) each Ai ∈M.
(2) {Ai} is a partition.

Definiteion 2.5.12. Dissection : Dissection is the less common word for parti-
tion.

Remark 2.5.1. Important (Repeat Remark 1.2.1): We know what is a power set. Frequently
we need to select certain collections of subsets of a set with certain structure out of the entire
collection of subsets. For example M which is a subcollection of P. That is, M ⊆P. When
we freely select an arbitrary collection and like to impose certain structure to them we call
that collection a free collection and we show it by F . To impose the certain structure to
this collection F , we make an intersection over all those collections that have that structure
and contain F as a subset. Then we have the smallest collection shown say by F

∗ that
is endowed with our desired structure. We easily can verify that having any two sets in F

∗

then we have their intersection in F
∗. Also if a set belongs to F

∗ then all of its subsets also
belong to F

∗.

Axiom 2. Axiom of Choice: Every partially ordered set has a maximal chain.

2.6. Quotient Set

Definiteion 2.6.1. Equivalence Set (Class) : Assume R is an equivalence rela-
tion on set X . Choose an element ξ ∈ X . We show the set of all elements x ∈ X
that are related to ξ, that is, ξRx by symbol [ ξ ]R and call it equivalence set (class)
of element ξ, conveniently written as [ ξ ].

Assume we have a box of screws in different diameters, and we like to separate
them according to their diameters. The best way is to take a nut, test each screw
that fits that nut and put all such a screws in a pack. Glue the nut on the pack
for future reference or if a screw found somewhere not tested yet and needed to be
tested. You get few packs of classified bolts in place of one box of mixed screws.
Each pack is represented with a nut instead of bolts. We say all bolts in the pack
are congruent modulo that nut. We do not have screws any more. We have packs.
We partitioned original box of bolts into the equivalent classes. You can identify all
bolts inside each pack with the nut glued on the packs. We know nuts are different
from bolts. Sometimes you might decide for the partitioning of the screws inside
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each pack, say, based on the length of bolts.
Frequently we use the words identify and identification. By that we mean, “consider
or treat many objects as the same or associate all of them to the same thing.“ In
the same way that in a haberdasher’s shop each button attached on a box leads to
the idea that all buttons in that box are the same as that one. You cannot and
won’t recognise them from each other.

Definiteion 2.6.2. Identification : When we have an equivalence set [ ξ ] for
a ξ ∈ X, we say this set is an identification of all elements x ∈ X related to ξ

through R. All elements x ∈ X are identified by set [ ξ ]R.

Note that when you identify a set of elements x ∈ X by [ ξ ]R, then you have
exhausted all those elements to the single class [ ξ ]R. [ ξ ]R is a box and ξ is the
representative (the button) on the box. Each [ ξ ]R is one element of a superset,
say Ω, which is different from the set X . X is not a subset of Ω and Ω is not a
subset of X .

Definiteion 2.6.3. Identification, Division (Quotient) of a Set by its Subset
: Assume X is a non-empty set and A ⊂ X and V = X − A. Consider we use
the monstrous meticulous notation ⋃V ∪ {A}. We show this set as X/A, as all
the elements of subset A are shrunk to (identified by) one of its elements and put
together with the remaining elements of X in a superset shown as X/A. Please
differentiate it with the complement set X/A.

The common, identifying, character of the boxed elements is merely their be-
longness to the subset A. We identify all elements of A as one and label them by
A.
Hence we make a set consisting of elements of X −A, and we put whole set A as
one point next to those elements as the representative of all the removed elements.
Assume we have a box of loose balls with different colours. We can find four red
ball among all the balls. We separate them in a small box A and put this small
box back in the original box among other balls. Now with one look we can identify
the box of the all red balls among all the balls.

Example 2.6.1. Cone : Assume I = [0, 1] ⊂ R. and X is any set. The Cartesian
product X × I is called a solid Cylinder of unit height. A subset of this set is the set
X ×{1}, which constitute its top cross section. Then the quotient (X ×I)/(X×{1})
is called a cone with vertex at point 1. Hence, a cone is the quotient (division) of
a cylinder by its top surface. I put parenthesis for clarity. I do not need them.
Hence, X × I/X × {1}.

Exercise 6. An easy exercise : If ξ ≠ ζ, then either [ ξ ]R ∩ [ ζ ]R = ∅ or[ ξ ]R = [ ζ ]R.

Remember those boxes of the bolts.

Definiteion 2.6.4. Identifying Map (Kuratowski) : Assume f is a mapping of
X to Y , that is f ∶ X Ð→ Y . Take ξ ∈ X and define relation R on X as xRξ for
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x ∈ X if and only if f (x) = f (ξ). We say that the mapping f identifies a class of
elements of X . (Also please remember the kernel of a function 1.4.40)

It is easy to prove that this relation is an equivalence relation on X . Given
ξ ∈ X , the set of all x ∈X equivalent modulo f to ξ, is shown as, [ξ]f , and sometimes
is referred as the orbit of ξ under f .

Remark 2.6.1. Kuratowsky identification actually is defined when we define relation R on
X as xRξ for x ∈ X if and only if fm (x) = f n (ξ) for ξ ∈X and some n, m ∈ Z, where X is a
modulus set with respect to mapping f . Identification of ξ is shown as [ξ]m,n

f
, and reads as

orbit of ξ with respect to f of order m,n.

Example 2.6.2. : Let’s define b ∶ Z Ð→ {0,1} such that b (z) = 0 whenever z is
even, and otherwise, b (z) = 1 when z is odd. Hence even integers are identified by
0 through the mapping b and odd integers by 1. Then, Z/b = {[3]b , [4]b}.

Definiteion 2.6.5. Fixed Point : Take ξ in X and assume X is a submodulus

set with respect to the mapping f ∶ X Ð→ X. Then [ξ]0,1f , that is the set of all

ξ = fk(ξ) are called fixed points of f of order k.

Definiteion 2.6.6. Quotient Set X /R : Assume R is an equivalence relation in
X . For each ξ ∈ X , there is an equivalence set [ ξ ]R. Then the set {[ ξ ]R ∣∀ξ ∈ X }
is called the quotient set of X modulo R, shown as X /R.

● Each equivalence set [ ξ ]R exhausts certain subset of X to a single class.
The set of all these classes is the quotient set X /R.
● Quotient set X /R makes a partition on set X .
● In the Example 2.6.2 above we showed the quotient set as Z/b.

Definiteion 2.6.7. Canonical map π : The map π ∶ X Ð→ X /R, where ξ ↦ [ ξ ]R
is called canonical map on X . Canonical map sometimes is referred as the natural
map.

The canonical map π is surjective.

Example 2.6.3. Nuts and Bolts: Remember the box of bolts already discussed.
Assume a mapping (actually a function) f ∶ B → R+ from the box of loose bolts B
to positive real numbers assigns to each bolt its diameter in millimeter. There is
a canonical map π ∶ B Ð→ B/ ∼ from the loose box of all bolts to the partitioned
collection of packs of equal diameter bolts that assigns one nut for each pack. Now
there exists a unique injective function f̂ ∶ B/ ∼Ð→ R+ such that f = f̂ ○ π. See
Figure 2.1.

Remark 2.6.2. In reference to definition 2.6.4, we can define a mapping κ ∶X/f Ð→ f (Y )

(this is a bijection). This should be contrasted clearly with the canonical mapping, 2.6.7,
defined above.

�

Example 2.6.4. Let 0 ≤ ξ ≤ 1. Identify all x ∈ R by relation ξRx ,when, x = k +ξ,
for all integers k ∈ Z. Quotient set X /R is the unit circle S1, or the unit circle in
the complex plane. Each [ ξ ]R is one point on the circle and each addition of the
integer k rotates once round the circle.
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B
f ✲ R+

B/∼
π

❄

f̂

✲

Figure 2.1. Commutative Diagram for Partitioning Nuts and Bolts.

Please differentiate the previous identification with R/Z, where one pinches all
points in Z as one point in 0 ∈ R. Result is a bouquet of infinite circles at the
origin. Take a tape (R) punched in equal intervals (Z) like a waist belt. Pass a
String through the holes. Then pull the string tight together and fasten ends of
the string. You are going to have a bouquet of circles attached at the holes (R/Z).
Previous example will be visited again (4.2.1) in shade of the quotient of additive
group R with respect to cosets of the subgroup Z; that is, R/Z. Therefore we have
two different R/Z and R/Z.
Perhaps you can remember the Gluing Mapping, from the definition 1.4.36. There
is another idea near to it we define as

Definiteion 2.6.8. Attaching Map : Assume we have sets X and Y and the
subset A ⊆X and the mapping f ∶ AÐ→ Y . Pinch each a ∈ A to its image f (a) ∈ Y .
The set of all points resulted in this way together with the points in X−A and points
in the Y − f (A) as they are, are said to be attached by the attaching map f . The
resulted identified set is shown as X ∪f Y

Assume we have a box of nuts and a box of bolts. Define the mapping f as
one that assigns a bolt of correct size from the second box (Y ) to each nut from
the first box (X). These proper nuts form a subset (A) of all nuts. Separate pairs
of fitted nuts and bolts and fix them together and return them with the left-alone
nuts and bolts in a joint box. Now we have a common box of separate nuts without
matched bolts and bolts without matched nuts and some attached nuts and bolts.
The mentioned f is an attaching map and the newly arranged box is the partition
of the union of the two boxes. Had we had a box of fifty nuts and a box of fifty
bolts and could find ten matched bolts and ten matched nuts (we could have more
than ten nuts since we did not emphasise f to be an injection, fitting more than
one nut around a bolt) the newly formed set has got 80 elements or less instead
of 100. This is a partitioning of the original mixture of nuts and bolts. Since we
have gathered those elements that can be related by our proposed mapping f , and
reduced the size of the set as desired. Also this does not show congruence among
the fitted nuts and bolts themselves more than it should. Since, for instance, we
only considered fitting of one or more nuts to a bolt not that we have separated all
bolts with the similar thickness or length.
Please note that to create the attaching map first we build a disjoint union of
nuts and bolts in a common box. To do that we should label contents of the first
box with something recognizable, say its box number, 1. And label all the content
of the second box with another number, say, 2. For these elements we did not need
such a labeling since the elements are physically recognizable by their shapes. We
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have a box of hardware; some labeled as nuts and some labeled as bolts. If the sets
were abstract sets such as the real numbers or sets of points in an Euclidean plane
then such a labeling for mixing them together would be imperative.
This is a preparation for later concise definition of an attaching map that requires
continuity of f and topological spaces X and Y . In discussing degenerate cases of
empty sets, we succeeded to build all whole numbers from zero to any arbitrary large
number. We know natural numbers are natural in the sense that human started
counting with them. This exclude zero from the set of natural numbers. Later
human discovered zero and after that negative number. Having natural numbers in
hand, how can we build zero and negative integers from them without additional
material? The only thing we need is definition of Cartesian product, and from
it the definition of an equivalence relation. We show the set of positive (natural)
numbers by N�

Example 2.6.5. Set of Integers Z : Take (µ, ν) ∈ N� × N� and define relation
shown with symbol ∼ by identifying all (m,n) ∈ N� × N� as (m,n) ∼ (µ, ν) if and
only if m + ν = n + µ. Then the equivalence set (class) [(µ, ν)] is said to be an
integer. The set of all integers is shown by Z. Note that 0 ≜ [(µ,µ)].

Example 2.6.6. Order in the Set of Integers Z : Remember we created a natural
order in the set of natural numbers by the ⊆ relation. Take (µ, ν) ∈ N� × N� and
define relation shown with symbol ≤ by all [(m,n)], [(µ, ν)] ∈ Z if and only if m+ν ≤
n+µ. Then this relation is reflexive, antisymmetric, and transitive in ordering the
equivalent classes of the form [(m,n)]; in the sense that, if z1 = [(m1, n1)] and
z2 = [(m2, n2)]. Then z1 ≤ z2 if and only if m1 + n2 ≤m2 + n1.

Definiteion 2.6.9. Congruence Relation : Take two integers a and b. If their
difference is an integer multiple of some non-zero integer k, that is, a − b = n.k, we
say a and b are related modulo n and we show it by a ≡ b (modulo n). We read
this as a is congruent to b modulo n.

In another word, we know two congruent integers as equal, or rather equivalent
numbers. Hence all congruent numbers (modulo n) exhaust or are identified by a
single class [ ]≡(modulo n).

Definiteion 2.6.10. Zn : Take ζ ∈ Z, the set of all z ∈ Z such that z ≡
ζ (modulo n) (that is, z − ζ = k .n) is the equivalent class [ζ]≡(modulo n).

We define Zn = {[ζ]≡(modulo n) ∣ ζ ∈ Z}

After now we show [ζ]≡(modulo n) simply as [ζ]n .
Example 2.6.7. Z1 : For each ζ ∈ Z we should take all z ∈ Z such that ζ ≡

z (modulo 1) (that is, ζ − z = k .1).
Assume ζ = 2 and we like to construct [ 2 ]≡(modulo1), or [ 2 ]1. Then the set of all

z ∈ Z such that z − 2 = k, or z = 2 + k , ∀k ∈ Z coincides with the set of integers Z.
Hence, [ 2 ]1 = {⋯,−3,−2,−1,0,+1,+2,+3,⋯} = Z. The same results for any ζ ∈ Z
other than 2. Hence, [ 0 ]1 = [ 1 ]1 = [ 2 ]1 = ⋯. Then we have, Z1 = {[ 0 ]1}.
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Please note to distinguish between Z and Z1. Set Z has countably infinite
members, while Z1 is a singleton set, has only one element [ 0 ]1. Incidentally, we
observe that [ 0 ]1 = Z and also Z1 = {Z}, and Z1 ≠ Z.

Example 2.6.8. Z2 : For each ζ ∈ Z we should take all z ∈ Z such that ζ ≡
z (modulo 2) (that is, ζ − z = k .2).
Assume ζ = 5 and we like to construct [ 5 ]≡(modulo2), or [ 5 ]2. Then the set of all

z ∈ Z such that z −5 = k .2, or z = 5+k .2 = 1+2.(2+k) = 1+2.m, ∀k ∈ Z coincides with
the set of all odd integers. Hence, [ 5 ]2 = {⋯,−7,−5,−3,−1,+1,+3,+5,+7⋯}. The
same results for any other odd integer ζ ∈ Z other than 5 such as 1 or 9 or 23. On the
other hand, if we select an even integer, say, ζ = 6 and construct [ 6 ]≡(modulo2), or[ 6 ]2. Then the set of all z ∈ Z such that z −6 = k .2, or z = 6+k .2 = 2.(3+k), ∀k ∈ Z
will be the set of all even integers (since it is a multiple of 2). Hence, [ 6 ]2 ={⋯,−8,−6,−4,−2,0,+2,+4,+6,+8⋯}. The same results for any other even integer
ζ ∈ Z other than 6 such as 2 or 10 or 18. Therefore, [ 0 ]2 = [ 2 ]2 = [ 4 ]2 = ⋯ and[ 1 ]2 = [ 3 ]2 = [ 5 ]2 = ⋯. Then we have, Z2 = {[ 0 ]2 , [ 1 ]2}.

Z2 has two members. All even integers are identified with one class (pinched
as if they are all one point) [ 0 ]2 and all odd integers are identified with another
class [ 1 ]2.

Example 2.6.9. Z3 : For each ζ ∈ Z we should take all z ∈ Z such that ζ ≡
z (modulo 3) (that is, ζ − z = k .3).
Assume ζ = 4 and we construct [ 4 ]≡(modulo3), or [ 4 ]3. Then the set of all z ∈ Z
such that z − 4 = k .3, or z = 4 + k .3, ∀k ∈ Z coincides with the set of all integers
in form of, [ 3 ]3 = {⋯,−12,−9,−6,−3,0,+3,+6,+9,+12⋯} = {0 + 3.k ∣∀k ∈ Z}. If
we select any integer ζ equal to one of these integers the equivalence set would be
equal to that again. We select [ 0 ]3 as representative of this class.Now select an
integer ζ = 1+3.k, say, ζ = 4 and construct [ 4 ]3. Then the set of all z ∈ Z such that
z −4 = k .3, or z = 4+k .3, ∀k ∈ Z will be the set [ 4 ]3 = {⋯,−8,−5,−2,+1,+4,+7,⋯} ={1 + 3.k ∣∀k ∈ Z}. Select [ 1 ]3 as identification of these integers. A similar argument
for ζ = 2+3.k such as ζ = 5 results in [ 5 ]3 = {⋯,−4,−1,+2,+5,+8,⋯}. Choose [ 2 ]3
for this set. At the end we have, Z3 = {[ 0 ]3 , [ 1 ]3 , [ 2 ]3}.

Z3 has three members.
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● A general observation is that card (Zn) = n. That is Zn has n members.

z = kn + α

α = −n then z = k.n − n = (k − 1).n = k′.n + 0;
α = −(n − 1) then z = k.n − (n − 1) = (k − 1).n + 1 = k′.n + 1;
⋮

α = −2 then z = k.n − 2 = (k − 1).n + (n − 2) = k′.n + (n − 2);
α = −1 then z = k.n − 1 = (k − 1).n + (n − 1) = k′.n + (n − 1);
α = 0 then z = k.n + 0;

α = 1 then z = k.n + 1;

α = 2 then z = k.n + 2;

⋮

α = n − 1 then z = k.n + (n − 1);
α = n then z = k.n + n = (k + 1).n = k”.n + 0;

Hence, α has only values from 0 to n − 1. Other values of α exhaust to
the same values, keep repeating.

● Another observation is that ⋃Zn = Z
● Always Zn ⊈ Z and Zn ⊉ Z.
● It is easily could be seen that there is a bijection between set Zn and set{0, 1, 2, . . . , n − 1}.

Remark 2.6.3. nZ : Here it is a good point to become familiar with the set nZ and contrast
it carefully with Zn. It is a countably infinite subset of Z and is defined as, assuming n ≠ 0,

nZ = { . . . , −3n, −2n, −n, 0, +n, 2n, 3n, . . . }

That is, each integer is multiplied by an n, forming a subset of Z. For example,

2Z = { . . . , −6, −4, −2, 0, +2, 4, 6, . . . }

and,

5Z = { . . . , −15, −10, −5, 0, +5, 10, 15, . . . }

and,

12Z = { . . . , −36, −24, −12, 0, +12, 24, 36, . . . }

We always have,

nZ ⊆ Z

Please note that elements of nZ are not multiplications. In essence, they are results of
additions of each member of Z added n times together.

Remark 2.6.4. Sometimes, you may encounter with a notation conveniently written as

Zn = Z/nZ (beautiful!)

This means that you identify points of Z modulo n. In group theory this notation is helpful
in recognizing the quotient groups.

In Example 2.6.5 we succeeded to build set of integers Z by defining an equivalence
relation on N� × N�. Here, we follow that approach and build the set of rational
numbers Q from Z×Z�. Again we have removed zero from Z and show the resulting
set by Z� = Z/ {o}.
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Example 2.6.10. Set of Rational Numbers Q : Take (µ, ν) ∈ Z� ×Z� and define
relation shown with symbol ∼ by identifying all (m,n) ∈ Z� × Z� as (m,n) ∼ (µ, ν)
if and only if m.ν = n.µ. Then the equivalence set (class) [(µ, ν)] is said to be
a rational number. The set of all rational numbers is shown by Q. Note that[(µ,µ)] = 1 and [(0, ν)] = 0.

Example 2.6.11. Order in the Set of Rationals Q : Remember we created a
natural order in the set of integers by the ≤ relation. Take (µ, ν) ∈ Z × Z and
define relation shown with symbol ≤ by all [(m,n)], [(µ, ν)] ∈ Q if and only if
m⋅ν ≤ n⋅µ. Then this relation is reflexive, antisymmetric, and transitive in ordering
the equivalent classes of the form [(m,n)]; in the sense that, if q1 = [(m1, n1)] and
q2 = [(m2, n2)]. Then q1 ≤ q2 if and only if m1 ⋅ n2 ≤m2 ⋅ n1.

It is easy to verify that the 0, 1, and the order defined in rationals serves
equivalently as the 0, 1, and the order in the integers.

2.7. Indexing Sets

Definiteion 2.7.1. Net : Let X be a directed set (defined 2.3.10) then a mapping
from X to the set Ω is called a net in Ω.

Definiteion 2.7.2. Indexing Map : Let M be a collection of subsets of the set Ω.
A surjective map f from a set J , called index set, to M is said to be an indexing
map.

Definiteion 2.7.3. Indexed Family of Sets : Let M be a collection of subsets of
the set Ω. Take the set J as an index set. Then the indexing surjection f ∶ J Ð→M

of α ↦ f (α) together with the family M is called an indexed family of sets. We
denote f (α) by Aα. Indexed family is shown by{Aα}α∈J

A J -tuple is very similar to an indexed family of sets. The difference is that it
is defined on members of a set rather than subsets of a set.

Definiteion 2.7.4. J−tuple : Assume X is a subset of the set Ω. Take the set
J as an index set. Then a mapping x ∶ J Ð→ X of α ↦ x (α) is called a J−tuple.
We denote x (α) by xα and we call it the α−coordinate of x. The collection shown
by {xα}α∈J is called coordinates of x.

Definiteion 2.7.5. J−power : The set of all J−tuples of set X is called a
J−power of X and is denoted by JX or X J . J−power is a subset of the power
set P (J ×X )

Definiteion 2.7.6. Cartesian Product : Let {Aα}α∈J be an indexed family of
subsets of Ω. Assume X = ⋃α∈J Aα. Then the Cartesian product ∏α∈J Aα is the
set {x ∶ J →X} such that x (α) ∈ Aα, ∀α ∈ J
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Perhaps you remember from 1.4.2 already we promised to extend the idea
of ordered pairs and the Cartesian products from Xn to any value of n. See,
the Cartesian product is actually itself a set of mappings as defined in previous
definition. Here we find an elegance of mathematical rigour for consistency. To
further explain it, let me elaborate this definition, I have given here, to a set
J = {1, 2} and let A1 = {ξ, ζ} and A2 = {a, b, c}. Then we write

{x} = {
{(1, ξ) , (2, a)} , {(1, ξ) , (2, b)} , {(1, ξ) , (2, c)} ,
{(1, ζ) , (2, a)} , {(1, ζ) , (2, b)} , {(1, ζ) , (2, c)}
}.

(2.7.1)

This is the set of all possible mappings conceivable on the set J . There are six
possible mappings altogether, as I have separated them by putting each map-
ping in its own braces. Each mapping has two components in the braces, each
component as an ordered set itself with first element from J and the second el-
ement from its related index: A1 for 1 ∈ J , or A2 for 2 ∈ J . The first thing
we notice is having six members as already we expect for Cartesian product of
A1 × A2 = {(ξ, a), (ξ, b), (ξ, c), (ζ, a), (ζ, b), (ζ, c)}. What is (ξ, a)? It says, ξ
comes first and then comes a. Its equivalent is the mapping {(1, ξ) , (2, a)}. First
component of mapping is (1, ξ), that is ξ comes first (tagged so with a 1), and
second component of mapping is (2, a), that is a comes second (tagged so by a
2). Another point that we notice is if we have a string, (ξa) and assume we have
a pointer needle shown as a punctuation mark comma ”,” If we move the needle
from left (beginning of strings as we write from left to right) to the right (end of
the string), the comma first registers ξ as the set {ξ} and then registers ξa as the
set {ξ, a}. Hence we read the set {{ξ} , {ξ, a}} altogether as its log. In shadow of
this, we understand item (5) of 1.4.2 better if we consider J = {1}.

Further we can see what is a tuple, comparing it with the meaning that we
know from Calculus course about coordinate system. We remember coordinates
of a 1-dimensional space (e.g., a line) are singles, a 2-space are doubles, a 3-
space are triples, and for n-space they are n-tuples. Here we notice that a J-tuple
defined in 2.7.4 is consistent with that idea considering each one of the mappings
we can separate in 2.7.1. Here, as a J−tuple we have a double coordinates for
instance, {(1, ξ) , (2, a)}. Its first coordinate is x(1) = ξ, and its second coordinate
is x(2) = a, or x1 = ξ and x2 = a.

Definiteion 2.7.7. Box : Let {Aα}α∈J be an indexed family of subsets of Ω.
Further assume that there exists the Cartesian product ∏α∈J Aα. Now assume ∀α ∈
J there exists Bα ⊆ Aα Then the box B is defined as ∏α∈J Bα

A parameterizing map becomes important when we define a manifold.

Definiteion 2.7.8. Parameterizing Map : Assume A is a parameter set. Con-
sider the indexed family of sets {Aα}α∈Jand an indexed family of mappings {fα}α∈J ,
both indexed with J such that fα ∶ A Ð→ Aα then the mapping f ∶ A Ð→ ∏α∈J Aα

where f (t) = (fα (t))α∈J , t ∈ A is called a parameterizing mapping on A.
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As an example, consider the time dependent system trajectory on an euclidean
plane. We have index set J = {1, 2} and parameter set of non-negative real
numbers, A = {t ∣t ∈ R∗} such that, t ↦ (v0t, 0.5a.t2). Here, f1(t) = v0.t and
f2(t) = 0.5a.t2, where v0 is initial speed and a is the acceleration of the object.

Definiteion 2.7.9. Projection Map : Take {Aα}α∈J as an indexed family of sets.

The mapping πβ ∶ ∏α∈J Aα Ð→ Aβ where πβ ((aα)α∈J) = aβ is called a projection
map on A.

In view of 2.7.1 let’s see what is, say, π2({(1, ξ) , (2, a)})? It picks the second
element of this mapping, the element that is accompanying β = 2. It is the element
a ∈ A2 from (2, a). That is, π2({(1, ξ) , (2, a)}) = a. You appreciate that projection
mapping is not an injection at all. I write all possible values here,

π1({(1, ξ) , (2, a)}) = ξ,
π1({(1, ξ) , (2, b)}) = ξ,
π1({(1, ξ) , (2, c)}) = ξ,
π1({(1, ζ) , (2, a)}) = ζ,
π1({(1, ζ) , (2, b)}) = ζ,
π1({(1, ζ) , (2, c)}) = ζ,
π2({(1, ξ) , (2, a)}) = a,
π2({(1, ξ) , (2, b)}) = b,
π2({(1, ξ) , (2, c)}) = c,
π2({(1, ζ) , (2, a)}) = a,
π2({(1, ζ) , (2, b)}) = b,
π2({(1, ζ) , (2, c)}) = c,

(2.7.2)

Idea of bundles come from idea of product space.

Definiteion 2.7.10. Product Space : Again let {Aα}α∈J be an indexed family

of subsets of Ω. We can define Sβ = π−1β ((Bβ)β∈J) for some Bβ ⊆ Aβ and for all

β ∈ J . Then S = ⋃β∈J Sβ is called the product space of the indexed family {Bα}α∈J .

Assume β = 2. and B2 = {a, c} ⊂ A2. Then

S2 = π
−1
2 ({a, c}) = {

{(1, ξ) , (2, a)} ,
{(1, ξ) , (2, c)} ,
{(1, ζ) , (2, a)} ,
{(1, ζ) , (2, c)}
}

(2.7.3)
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Further assume β = 1. and B1 = {ζ} ⊂ A1. Then

S1 = π
−1
1 ({ζ}) = {

{(1, ζ) , (2, a)} ,
{(1, ζ) , (2, b)} ,
{(1, ζ) , (2, c)} ,
}

(2.7.4)

Hence, we have,

S = S1 ∪ S2 = {
{(1, ξ) , (2, a)} ,
{(1, ξ) , (2, c)} ,
{(1, ζ) , (2, a)} ,
{(1, ζ) , (2, b)} ,
{(1, ζ) , (2, c)}
}

(2.7.5)

Definiteion 2.7.11. Disjoint Union : Take {Aα}α∈J as a collection of indexed
family of sets. Then the set ∐Aα = ⋃α∈J {(x , α) ∣∀x ∈ Aα} is called disjoint product
of the collection of sets.

This is how we bring elements of an indexed family of sets attached to and
labeled with the index of their container sets into a union of all the sets of the
family. It is like this for instance, for β = 2 and A1 = {ξ, ζ} and A2 = {a, b, c}. We
have,

∐Aα = {
(ξ, 1) , (ζ, 1) ,
(a, 2) , (b, 2) , (c, 2)
}

(2.7.6)

This is the simple indexing we first encountered in the basic calculus. Question
remains that why do we call it a disjoint union. Assume, now we have again β = 2
but A1 = {ξ, ζ, a} and A2 = {a, b, c}. Then the disjoint union of the two sets is,

∐Aα = {
(ξ, 1) , (ζ, 1) , (a, 1) ,
(a, 2) , (b, 2) , (c, 2)
}

(2.7.7)

We are assured that the two sets to be unioned are already disjoint by indexing
their elements to their respective sets, in spite of having the common element a.
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2.8. CUT 37

2.8. Cut

Up to this point we succeeded to build natural, integer, and rational numbers.
Using a cut we are going to build real numbers.

Definiteion 2.8.1. Dedekind Cut : A Dedekind cut is defined as a set x such
that,

(1) It is a nonempty subset of Q, that is, ∅ ⊊ x ⊊ Q.
(2) The set x is closed downward, that is, ∀s ∈ x if r ∈ Q and r < s then r ∈ x.
(3) ∀s ∈ x, ∃t ∈ x such that s < t.

You remember that so far we defined the set of integers Z as a set of equiva-
lence classes over the set of natural numbers N and the set of rationals Q as a set of
equivalent classes over the set of integers Z. That line does not continue to define
the next stage, i.e., the set of real numbers R. This set is defined as the set of all
cuts, each cut x is defined as a subset of rational numbers. Each cut is one real
number.
In other approaches, one might see other ways in analysis to build the set of real
numbers. But building up from the empty set ∅ building stones to natural num-
bers and then to integers and then to rationals and at last defining a cut is the
most straightforward mind-pleasing way of accomplishing this, and perhaps more
axiomatics and rigorous approach.

Example 2.8.1. Order in the Set of Real Numbers R : Remember we created a
natural order in the set of rationals by the ≤ relation. Among the real numbers we
say the real number x < y if and only if x ⊂ y.
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CHAPTER 3

Measure Theory Structures

Assume Ω is a set and M is a collection of subsets of Ω.

3.1. Semi-Ring Structures on Sets

Definiteion 3.1.1. Von Neumann Semi-ring : A collection of subsets M is a
Von Neumann semi-ring if it satisfies two following conditions

(1) If A,B ∈M then A −B ∈M.
(2) If A,B ∈ M and A ⊆ B then there is a chain {Ai∣Ai ∈M, i = 0,1,⋯,n}

such that A = A0 ⊆ A1 ⊆ ⋯ ⊆ An = B and Ai −Ai−1 ∈M for i = 1,⋯,n.

Definiteion 3.1.2. Semi-ring : A collection of subsets M is a semi-ring if and
only if

(1) If A,B ∈M then A −B ∈M.
(2) If A,B ∈M then there is a countable partition{Ai ∣Ai ∈M, i = 0,1,⋯} for A −B; that is A −B = ⋃∞i=1 Ai.

3.2. Ring Structures on Sets

Definiteion 3.2.1. Ring (Boolean Ring or Finite Union Ring): A ring is defined
as a collection of subsets where,

(1) If A,B ∈M then A −B ∈M.
(2) If for any collection {Ai ∣Ai ∈M, i = 0,1,⋯,n} we have ⋃n

i=1Ai ∈M.

Definiteion 3.2.2. σ−ring (Infinite Union Ring): A σ−ring is defined as a
collection of subsets where,

(1) If A,B ∈M then A −B ∈M.

39
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40 3. MEASURE THEORY STRUCTURES

(2) If for any countable collection {Ai ∣Ai ∈M, i = 0,1,⋯} we have

⋃∞i=1 Ai ∈M.

Definiteion 3.2.3. σ −M (Ring) : It is a collection M of subsets of Ω where

(1) M is a σ−ring.
(2) ∃{Ai ∣Ai ∈M, i = 0,1,⋯} such that Ω = ⋃∞i=1 Ai

3.3. Field Structures on Sets

Definiteion 3.3.1. Field (Kuratowsky Field): A collection M of subsets of Ω is
a field whenever,

(1) M is a ring and
(2) Ω ∈M

Definiteion 3.3.2. σ−field (Borel Field): A collection M of subsets of Ω is a
σ−field whenever,

(1) M is a σ−ring and
(2) Ω ∈M

Definiteion 3.3.3. σ −M(Field) : It is a collection M of subsets of Ω where

(1) M is a σ−field.
(2) ∃{Ai ∣Ai ∈M, i = 0,1,⋯} such that Ω = ⋃∞i=1 Ai

3.4. Algebra Structures on Sets

Definiteion 3.4.1. Algebra (Boolean Algebra): An algebra is defined as a col-
lection of subsets where,

(1) If A ∈M then Ac ∈M.
(2) If for any finite collection of subsets {Ai ∣Ai ⊆ Ω, i = 0,1,⋯,n} of Ω where

⋃n
i=1 Ai ∈M then we have each Ai ∈M.

(3) Ω ∈M

Definiteion 3.4.2. σ−algebra : A σ−algebra is defined as a collection of subsets
where,
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3.5. SEQUENCES OF SETS 41

(1) If A ∈M then Ac ∈M.
(2) If for any countable collection of subsets {Ai ∣Ai ⊆ Ω, i = 0,1,⋯} of Ω

where ⋃∞i=1Ai ∈M then we have each Ai ∈M.
(3) Ω ∈M

Definiteion 3.4.3. σ −M(Algebra) : It is a collection M of subsets of Ω where

(1) M is a σ−algebra.
(2) ∃{Ai ∣Ai ∈M, i = 0,1,⋯} such that Ω = ⋃∞i=1 Ai

3.5. Sequences of Sets

Definiteion 3.5.1. Increasing Sequence of Sets: For Ai ∈ M, and ∀i ∈ N we
have, Ai ⊆ Ai+1.

Definiteion 3.5.2. Decreasing Sequence of Sets: For Ai ∈ M, and ∀i ∈ N we
have, Ai ⊇ Ai+1.

Definiteion 3.5.3. Monotone Sequence of Sets: A sequence of Sets is Monotone
when it is either an increasing or a decreasing sequence of sets.

Definiteion 3.5.4. Monotone Class : A monotone class is defined as a countable
collection M of subsets {Ai ∣Ai ⊆ Ω, i = 0,1,⋯} where,

(1) If Ai ⊆ Ai+1 (or alternatively Ai ⊇ Ai+1) for each i = 0,1,⋯, and
(2) ⋃∞i=0 Ai ∈M (or alternatively ⋂∞i=0 Ai ∈M).

Already we defined supremum 2.3.4 and infimum of any collection of sets. Here
we limit its scope to a countable collection of sets.

Definiteion 3.5.5. Supremum of a Sequence of Sets: Assume I have any se-
quence of sets {Ai ∣Ai ∈M for i = 0,1,⋯} .
Then the supremum of a subsequence {Ai ∈M for i = p, p + 1, ⋯} for any p ∈ N is
defined as the set sequence {supp} = {⋃∞i=pAi}.

Definiteion 3.5.6. Infimum of a Sequence of Sets: Assume I have any sequence
of sets {Ai ∣Ai ∈M for i = 0,1,⋯} .
Then the infimum of a subsequence

{Ai ∈M for i = p, p + 1, ⋯}
for any p ∈ N is defined as the set sequence {infp} = {⋂∞i=pAi}.
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42 3. MEASURE THEORY STRUCTURES

Definiteion 3.5.7. Limit Supremum of a Sequence of Sets: Assume I have any
sequence of sets {Ai ∣Ai ∈M for i = 0,1,⋯}. Then the limit supremum of that se-
quence {Ai ∈M for i = 0, 1, ⋯} is defined as

lim
n→∞

sup {Ai} = ∞⋂
p=0

{supp} ; ∀p ∈ N.
Definiteion 3.5.8. Limit Infimum of a Sequence of Sets: Assume I have any se-

quence of sets {Ai ∣Ai ∈M for i = 0,1,⋯}. Then the limit infimum of that sequence{Ai ∈M for i = 0, 1, ⋯} is defined as

lim
n→∞

inf {Ai} = ∞⋃
p=0

{infp} ; ∀p ∈ N.
Definiteion 3.5.9. Limit of a Sequence of Sets : If in a sequence of sets, the

limit supremum is equal to the limit infimum then that sequence is said to have a
limit, limn→∞ {Ai} = limn→∞ sup{Ai} = limn→∞ inf {Ai}. A sequence that has
limit said to converges or being convergent. If a sequence is not convergent then it
is called divergent.

Example 3.5.1. Every monotone sequence of sets has limit : Assume {Ai} is
an increasing sequence of sets. Then

{supp} = {∞⋃
i=p

Ai} ?= {∞⋃
i=0

Ai} and {infp} = {∞⋂
i=p

Ai} ?= {Ap} for all p.

As ⋃∞i=0Ai is independent of p then limn→∞ sup{Ai} = ⋂∞p=0 {⋃∞i=0 Ai} = ⋃∞i=0 Ai.
On the other hand, limn→∞ inf {Ai} = ⋃∞p=0 {Ap} = ⋃∞i=0 Ai. A similar proof can be
applied to a decreasing sequence of sets. Please, deliberate on the points shown by

”
?=”.

Example 3.5.2. Not every non-monotone sequence of sets is divergent: a counter
-example is

{Ai} =
⎧⎪⎪⎨⎪⎪⎩
{x ∣0 < x ≤ 1 − (1/i)} if i odd

{x ∣ (1/i) ≤ x < 1} if i even,

First show that this is neither an increasing nor a decreasing sequence of sets. Then
prove that it is convergent

Axiom 3. Axiom of Choice : Given a non-empty class M of disjoint sets Ai,
then there exists a set B ⊂ ⋃{Ai ∣Ai ∈M} such that B ∩Ai is a single point set for
each Ai ∈M.

In other words, we can take (choose) arbitrarily one point from each set and
make an arbitrary new set B out of those points.

Axiom 4. Axiom of Choice : For a non-empty class M of disjoint sets Ai,
there exists a mapping (called a choice mapping) f ∶M → ⋃{Ai ∣Ai ∈M} such that,
for each Ai ∈M, we have, f(Ai) ∈ Ai

In other words, there is a mapping that can take (choose) an arbitrary point
from each set.
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CHAPTER 4

Algebraic Structures

4.1. Rudiments

Definiteion 4.1.1. Binary Operation on a Set : Assume S is a set. A binary
operation on two elements a ∈ S and b ∈ S is a mapping on S ×S. We show a binary
operation by O or ○ or ● or ⋅ or ∗ . The result of operation is shown as O (a, b) or
a ○b or a ●b or a ⋅b or a ∗b, respectively. We choose a ○b as our standard notation
for our binary operations. When there is no ambiguity we even prefer to use ab as
the result of binary operation O (a, b).

Definiteion 4.1.2. n-ary Operation on a Set : n-ary operation on a set S can
be defined recursively as a binary operation on S × Sn−1.

Definiteion 4.1.3. Structure : When we have a binary operation O on set S , we
say that the binary operation defines, or actually recognizes and reveals a structure[S ,O] on set S .

Definiteion 4.1.4. Closed : If the result of a binary operation on a set S is
a member of the set S then we say the set S is closed under that specific binary
operation.

Definiteion 4.1.5. Commutative : When a ○ b and b ○ a result in the same, we
say that the binary operation is commutative and write it as a ○ b = b ○ a.

Definiteion 4.1.6. Associative : When (a ○ b) ○ c and a ○ (b ○ c) result in the
same, we say that the binary operation is associative and write it as (a ○ b) ○ c =
a ○ (b ○ c) = a ○ b ○ c.

Definiteion 4.1.7. Right Cancellation Law: We say the binary operation ○ on
set S follows the right cancellation rule if from the a ○ c = b ○ c we can get to the
a = b for all the a, b, c ∈ S.

Definiteion 4.1.8. Left Cancellation Law: We say the binary operation ○ on set
S follows the left cancellation rule if from the c ○ a = c ○ b we can get to the a = b
for all the a, b, c ∈ S.

Definiteion 4.1.9. Regular Element: When in a set S for a binary operation ○
we can find an element s that satisfies both cancellation laws we call that element
a regular element.

43
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44 4. ALGEBRAIC STRUCTURES

Definiteion 4.1.10. Unity (neutral element): When in a set S for a binary
operation ○ we can find an element e such that ∀s ∈ S we can have e ○ s = s ○ e then
we call e the unity or neutral element of S for binary operation ○.

Definiteion 4.1.11. Unit (inverse element) : Assume ○ is a binary operation
defined in set S . Further assume that S is endowed with the unity element e. If
for an s ∈ S we can find an element u such that u ○ s = s ○u = e. Then s is called a
unit element of S . s and u are called inverse of each other.

Definiteion 4.1.12. Involution (involutary element): When in a set S for a
binary operation ○ we can find an element s such that we can have s ○ s = e then
we call s the involution or involutary element of S for binary operation ○.

Definiteion 4.1.13. Nilpotent Element: For any s ∈ S we can define sn recur-
sively as sn = s ○ sn−1. If we can find an element s ∈ S such that we can have sn = e
then we call s the nilpotent element of S for binary operation ○.

Definiteion 4.1.14. Idempotent Element: When in a set S for a binary opera-
tion ○ we can find an element s such that we can have s ○ s = s then we call s the
idempotent element of S for binary operation ○.

Next we assume that f is a mapping from set X to set Y . Also we have binary
operation ○ on X and binary operation ● on Y

Definiteion 4.1.15. Morphism (Structure Preserving Mapping) :A morphism
f from set X to set Y carries structure of X into the structure of Y. That is,
f (a ○ b) = f (a) ● f (b)

(1) HomoMorphism: This is a morphism from a set X into a different set Y .
(2) EndoMorphism: EndoMorphism is a morphism from a set X into the

same set X .

Definiteion 4.1.16. Kernel of Morphism : Assume f is a morphism from set X
to set Y . Then the set ∀x ∈ X such that f (x) = 0 is called the kernel of morphism
f .

Definiteion 4.1.17. Homomorphism : When the mapping f ∶ X Ð→ Y is just
an into mapping.

Definiteion 4.1.18. Monomorphism : When that mapping is an injection map-
ping then the homomorphism is a monomorphism

Definiteion 4.1.19. Epimorphism : When the mapping is a surjection mapping
then the homomorphism is an epimorphism.

Definiteion 4.1.20. Isomorphism : If the mapping is both an injection and a
surjection then the homomorphism is an isomorphism.
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4.2. GROUPS 45

Definiteion 4.1.21. Endomorphism : When the mapping f ∶ X Ð→ X is just
an into mapping.

Definiteion 4.1.22. Endo-monomorphism: When that mapping is an injection
mapping then the endomorphism is an endo-monomorphism

Definiteion 4.1.23. Endo-epimorphism : When the mapping is a surjection
mapping then the endomorphism is an endo-epimorphism.

Definiteion 4.1.24. Automorphism (Endo-isomorphism): If the mapping is both
an injection and a surjection then the endomorphism is an automorphism.

4.2. Groups

Definiteion 4.2.1. Groupoid : A set G with a binary operation defined on ele-
ments of that set is called a groupoid. A groupoid is a binary collection of the set
G and the operator O; that is, (G, O).

Definiteion 4.2.2. Semi-group : Semi-group is a groupoid (G, O) where O is
associative.

Definiteion 4.2.3. Monoid : Monoid is a semi-group (G, O) where a unity

element e ∈ G exists for the binary operation O.

Definiteion 4.2.4. Group : Group is a monoid (G, O) where each element
g ∈ G is a unit with respect to the binary operation O.

Definiteion 4.2.5. Abelian Group (Commutative Group) : In group (G, O) the
binary operation O could be a commutative operator. In that case the group (G, O)
is called a commutative or Abelian group

Definiteion 4.2.6. Subgroup : In group (G, O) let H ⊂ G. Assume a, b ∈ H . If
a ○ b−1 ∈ H , as well, then H is a subgroup of G.

Definiteion 4.2.7. Subgroup Generated by a Subset : In group (G, O) let X ⊂
G. X is not necessarily a subgroup. Assume a set Y consists of all elements p
formed from n elements x1, x2,⋯, xn, not necessarily different, taken from X such
that p = x ǫ1

1 ○x
ǫ2
2 ○⋯○x

ǫn
n where ǫj = ±1, ∀j = 1, ⋯, n. This new set Y has structure

of a group and is called subgroup of G generated by X . We show this set by gp (X ).
Definiteion 4.2.8. Finitely Generated Subgroup : When X is a finite set with n

elements the subgroup generated by X is called a finitely generated subgroup. This
set, usually is shown by Cn, and is said to be cyclic group of order n.

Definiteion 4.2.9. Cyclic Subgroup : Assume the set X is a singleton {x}, then
the finitely generated subgroup is called the cyclic group generated by x . We show
it by gp ({x}).
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46 4. ALGEBRAIC STRUCTURES

Definiteion 4.2.10. Cosets (Left): Let H be a subgroup of G. Take g ∈ G. Then
the set of all elements formed as gh, ∀h ∈ H is called the left coset of the subgroup
H and is denoted as gH .

Definiteion 4.2.11. Cosets (Right): Let H be a subgroup of G. Take g ∈ G.
Then the set of all elements formed as hg , ∀h ∈ H is called the right coset of the
subgroup H . Right coset of H is shown as Hg.

Definiteion 4.2.12. Index of a Subgroup : Number of right cosets of H in G is
said to be the index of H in G and is shown as [G ∶ H ].

Definiteion 4.2.13. Quotient of Groups : Let G be a group and H a subgroup
of G. A partition of G by left cosets of H is called quotient of group G by the
subgroup H . We show the resultant partition by G/H .

It can be proved that G/H is a partition for G.

Example 4.2.1. Quotient R/Z : We want to find quotient of additive group R

to its subgroup Z. It means finding all cosets xZ for x ∈ R. To appreciate further,
I use the additive notation for showing cosets in form of x + Z. In other words,
put all z ∈ Z in the first coset which is actually Z subgroup itself; then take the
next x ∈ R in 0 < x ≤ 1 and put all x + z, ∀z ∈ Z in the next coset, and continue
until you get to x = 1. You will find out that for x = 1 you get to the first coset
Z. All the cosets after x > 1 will also become repeated, coinciding with the previous
corresponding cosets, as if round and round around a circle. Compare this with the
quotient in 2.6

Definiteion 4.2.14. Normal Subgroup : Let H be a subgroup of G. H is called
a normal subgroup when g−1hg ∈ H , ∀g ∈ G and ∀h ∈ H . To show H as a normal
subgroup of G we use notation H ◁G.

Definiteion 4.2.15. Simple Group : A group without a proper normal sub-
group is a simple group.

Definiteion 4.2.16. Factor Group : Let G be a group and H a normal subgroup
of G. One can prove that the resulting quotient G/H is a group and a subgroup of
G. G/H is called the factor group.

Definiteion 4.2.17. Commutator : Let x , y ∈ G, where G is a group. Then
commutator w of x and y is defined as w = x−1y−1xy we show the commutator

by the bracket notation w = [x , y].
Definiteion 4.2.18. Commutator Subgroup : The subgroup G ′ of G generated

by [x , y], that is, gp ([x , y]) is called the commutator subgroup of G.

We show that G ′ is normal in G.

Definiteion 4.2.19. Center of a Group : This is the set of those elements a ∈ G
such that ∀g ∈ G we have ag = ga. We show the center of G by A (G).
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Definiteion 4.2.20. Centralizer : Let A ⊂ G, where A is not necessarily a
subgroup of G. This time select those elements g ∈ G such that ∀a ∈ A we have
ag = ga. This new set built by help of A is called the centralizer of A in G and is
shown by C (A).

Definiteion 4.2.21. Normalizer : Let A ⊂ G, where A is not necessarily a
subgroup of G. Again select those elements g ∈ G such that we have Ag = gA. This
set built by help of A is called the normalizer of A in G and is shown by N (A).

Definiteion 4.2.22. Normalizer of a subgroup H: Let A ⊂ G, where A is not
necessarily a subgroup of G, and H be a subgroup of G. Select those elements
h ∈ H such that we have h = h−1Ah. This set built by help of A and H is called the
normalizer of A in subgroup H and is shown by NH (A).

Definiteion 4.2.23. Subnormal Series : In the chain {e} = A0 ⊆ A1 ⊆ ⋯ ⊆ An =
G of group G we have Ai◁Ai+1

Definiteion 4.2.24. Factors of a Subnormal Series : Quotients Ai+1/Ai are said
to be the factors of a subnormal series.

Definiteion 4.2.25. Upper Central Series : A chain of subgroups {e} = A0 ⊆
A1 ⊆ ⋯ ⊆ An = G of group G is an upper central series whenever A1 is the center
of G and Ai+1/Ai is the center of G/Ai

In this case Ai+1 ◁G

Definiteion 4.2.26. Nilpotent Group : Upper central series {e} = A0 ⊆ A1 ⊆ ⋯ ⊆
An = G of group G is a finite chain.

Definiteion 4.2.27. Solvable Group : In the subnormal series the index of H in
G that is, [Ai+1 ∶ Ai] is a prime depending on i .

Definiteion 4.2.28. Composition Series : In the subnormal series Ai+1/Ai is a
simple group; that is, it is a group without any proper normal subgroup.

Definiteion 4.2.29. H -conjugates of Subsets of a Group : Assume T and S are
any two subsets of G and H is a subgroup of G; such that there exists h ∈ H that
implies h−1Sh = T. Then S and T are called H -conjugates subsets of group G.

Definiteion 4.2.30. Conjugate Subsets : Let T and S to be any two subsets of
G. Further, assume that there exists g ∈ G such that g−1Sg = T. Then S and T
are called conjugates subsets of group G.

Definiteion 4.2.31. p-group : When the order of a group G is a power of a
prime number p; that is, ∣G ∣ = pr where r is a positive integer.

Definiteion 4.2.32. Sylow p-subgroup :
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Definiteion 4.2.33. Ordered Group : Assume G is an Abelian group endowed
with an order structure ≤. Then it is said to be an ordered group if for all z ∈ G,
a ≤ b implies a+ z ≤ b+ z. In an ordered group any element e ≤ a is called a positive
element.

Definiteion 4.2.34. Riesz Group : Assume ordered group G is the subset of the
ordered set X. G is said to be a Riesz group if for all a, b ∈ G we have sup(a, b) ∈ G
and inf(a, b) ∈ G.

Note that that in the Riesz group we only consider the supremum and infimum
of a pair of elements. Supremum is the least upper bound. An upper bound of a
subset A of elements of a set X could be any element in X that is larger than all
elements of A. Hence, generally upper bounds constitute a subset of elements of
X . Assume we find an x ∈ B such that x is less than any element of B (it is easy
to verify that such an x exists), then this x is the least upper bound of the set A;
yes, the set A. This could belong to A or not belong to A. One should not confuse
it with the “maximum” element of a subset. Maximum element could exist or not
to exist. If exists it should belong to that subset. If the suprimum belongs to a set
then it is also the maximum element of that set. At this point please have a look
at the definition of “cut” (2.8.1).

4.3. Action of a Group

Definiteion 4.3.1. Action of a Group on a Set: Assume there is a mapping,
shown with symbol ⊙, such that ⊙ ∶ G ×X Ð→ X . Mapping ⊙ is called the action
of G on set X .

Definiteion 4.3.2. G-set of a Set : Let ⊙ be an action of group G on set X .
We say X is G-set if ∀x ∈ X we have

(1) e ⊙ x = x where e is unity in G.
(2) (g1 ∗ g2) ⊙ x = g1 ⊙ (g2 ⊙ x); ∀g1 and ∀g2 ∈ G, where ∗ is the binary

operation in G.

Elements of G are also called operators on X when the context requires it.

Note that in both definitions above, we took two members from G and X
respectively in that order and G is on the left of X . The result is an element in
X . We equally could define an action of G on the right of X .

Definiteion 4.3.3. Xg−set : Let ⊙ be an action of group G on set X . A subset
Γ of X is said to be Xg−set if ∀x ∈ Γ we have g ⊙ x = x where g is an element in
G.
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Definiteion 4.3.4. GX−group : Let ⊙ be an action of group G on set X . A
subset H of G is said to be Gx−set or isotropic subgroup of G if ∀g ∈ H we have
g ⊙ x = x where x is an element in X .

4.4. Rings

Definiteion 4.4.1. Array of Binary Operations : An array of binary operations
is a set of two or more binary operations defined to create an algebraic structures.
We show it with a bracket, e.g., like this [∗, ⊙].

Definiteion 4.4.2. Ringoid : This is defined as a structure built out of a set R
and a duet array [+, ⋅ ] of binary operations such that

(1) (R, +) is an Abelian (commutative) group
(2) (R, ⋅ ) is a groupoid.
(3) ⋅ is distributive over +, both from the left and from the right. That is

a ⋅ (b + c) = a ⋅ b + a ⋅ c and (b + c) ⋅ a = b ⋅ a + c ⋅ a.

We show the ringoid as (R, [+, ⋅ ])

We use ’addition’ and ’multiplication’, respectively to name the binary op-
erations [+, ⋅ ].

Definiteion 4.4.3. Ring : A ring is a ringoid (R, [+, ⋅ ]) where (R, ⋅ ) is a
semi-group.

Definiteion 4.4.4. Unitary Ring : A unitary ring is a ring (R, [+, ⋅ ]) where(R, ⋅ ) is a monoid.

In any of the above three structures we can define new structures such that
the multiplication to become commutative. A more interesting case is when you
impose a constraint for multiplication to obey right (left) cancellation law as well.

Definiteion 4.4.5. Integral Domain : An integral domain is a ring (ringoid,
ring, or unitary ring) where a ⋅ b = 0 implies either a = 0 or b = 0 or both a = b = 0.

An integral domain usually is called a domain. Hence, as it is said, in an
integral domain we have no zero divisor. If a and b are two nonzero elements of
domain R then their product ab is nonzero.

Definiteion 4.4.6. Division Ring : A division ring is a unitary ring (R, [+, ⋅ ])
where (R, ⋅) is a group.
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Definiteion 4.4.7. Skew Field : This is an old fashioned name for the division
ring.

Note that with the definition of division ring it is implied that the division ring
is a ring with unit elements for multiplication.

Definiteion 4.4.8. Field : A field is a division ring (R, [+, ⋅ ]) where (R, ⋅ ) is
an abelian (commutative) group.

You note that a field is two abelian groups (R, + ) and (R, ⋅ ) interwoven to-
gether through the distributive law of the underlying ringoid.

4.5. Ideals

Before proceeding to ideals, it is instructive to become familiar with a subring.
That makes us able to clearly contrast it with an ideal. Concept of ideals has roots
in determinants, multiplication of polynomials and symmetric polynomials.

Definiteion 4.5.1. Subring : A subring S of the ring R is a subset of R such
that

(1) (S , +) is a subgroup of Abelian group (R,+).
(2) If a ∈ S and b ∈ S then a ⋅ b ∈ S.
(3) 1 ∈ S.

● The first item above is equivalent to proposition that ∀a, b ∈ S we have
a − b ∈ S , which then implies 0 ∈ S .

Ideals bring the concept of group cosets to multiplication in rings. During this
discussion we do not assume that the ring R is a commutative ring. We also avoid
using right or left. We believe context is clear. All notations are written ”right”
sided.

Definiteion 4.5.2. Ideal : Let (R, [+, ⋅ ]) is a ring. An ideal I is a subset of R
such that

(1) (I , +) is a subgroup of Abelian group (R, +) and
(2) If i ∈ I and r ∈ R then i ⋅ r ∈ I .
(3) Usually 1 ∉ I.

● The first item (1) above is equivalent to proposition that ∀a, b ∈ I we
have a − b ∈ I , which then implies 0 ∈ I .
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4.6. ARITHMETIC OF IDEALS 51

● The second item (2) above is equivalent to proposition that I .r ⊆ I ,∀r ∈ R.
● R is an ideal in R.
● R is the only ideal in R that is a subring. No other ideal is a subring of
R.
● {0} is an ideal in R.
● The intersection of any family of ideals in R is an ideal in R.
● The third item (3) above is mentioned to help the reader to compare an
ideal with a subring. There is only one ideal that defies this restriction as
we see in the next definition.
● You might have noticed that a ring as we have define is not commutative
in its multiplicative (R, ⋅ ) semi-group. Hence we can have different left
and right ideals. That conciseness is most of the time beyond the rigor
considered for our exposure of the subject. If necessary we will mention
it explicitly. We have tried to be consistent all the time.

Definiteion 4.5.3. Proper Ideal : An ideal I in a ring R is a proper ideal if
I ≠ R.

It is routine to show that in a proper ideal I , we always have 1 ∉ I
An ideal which is {0} or R is said to be a trivial ideal. Otherwise, it is a non-trivial
ideal.

Definiteion 4.5.4. Simple Ring: A ring R which has no ideal but trivial ideals{0} and R is called a simple ring.

Hence a simple ring has only trivial ideals.

4.6. Arithmetic of Ideals

Ideals are a crucial point in understanding of a large part of algebra. We
continue to make ourselves more friendly with concepts surrounding them. Though
a bit artificial, arithmetic of ideals is important pedagogically and perhaps not
much of later usage. As sets ideals have unions and intersection and other set
theory operation that readers can work them out.
Addition is the set of term-by-term additions

Definiteion 4.6.1. Addition of Ideals : Assume a and b are ideals. Then we
define addition of a and b as,

a + b = {a + b ∣ a ∈ a and b ∈ b}
Definiteion 4.6.2. Multiplication of Ideals : Assume a and b are ideals. Then

we define multiplication of a and b as,

ab = { n∑
i=1

aibi ∣ ai ∈ a and bi ∈ b, n ∈ Z+}
= {a1b1, a1b1 + a2b2, a1b1 + a2b2 + a3b3, . . . }
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Definiteion 4.6.3. Ideal Generated by a Subset of a Ring : Assume X is any
subset of ring R. Consider the family of all ideals Iα, α ∈ J in R such that X ⊂
Iα,∀α ∈ J . Then ⋂

α∈J
Iα is an ideal in R and we have X ⊂ ⋂

α∈J
Iα. We call ⋂

α∈J
Iα the

ideal generated by X and show it as (X ).
Definiteion 4.6.4. Principal Ideal (Ideal generated by an element of a ring) :

If X is a singleton set {ρ} ⊂ R then (ρ) is called the principal ideal generated by
ρ.

One can show that (ρ) = {x ∣x = ρr ;∀r ∈ R} = ρR.
Remark 4.6.1. You immediately appreciate that ρ = 1 cannot generate a proper ideal.

Remark 4.6.2. Scaling of Ring : (ρ) is the scale up of the ring R. That is (ρ) = ρR. You
can bring the idea of translate from cosets of a subgroup to here to create quotient rings.

Similarly if {a1,⋯,an} is a subset of R then

(a1,⋯, an) = {a1r1 +⋯ + anrn ; ∀ri ∈ R; i = 1,⋯, n}

is the ideal generated by n−element set {a1,⋯,an}. In forming those sums we are
taking n arbitrary elements from the ring R in each summation.

Definiteion 4.6.5. Cosets of Ideal I with respect to group (R, +) : These cosets
are defined in usual group notion as I + r, where r ∈ R.

Note that (R, +) is commutative. So there is no difference between right and
left cosets.

Definiteion 4.6.6. Quotient Group R/I : This quotient is defined in a natural
way for construction of commutative group (R/I , ⊕) by
(4.6.1) (I + r) ⊕ (I + r ′) = I + (r + r ′)
Zero element of this quotient group is I + 0 = I

4.7. Quotient Rings

Definiteion 4.7.1. Group Natural Map : Is defined as π ∶ (R, +) Ð→ (R/I , ⊕)
such that r ↦ I + r.

In this sense π is a surjective group homomorphism. Now we are ready to
grasp the concept of quotient ring by defining a multiplication in group (R/I , ⊕)
to construct a minimum structure of a semi-group
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Definiteion 4.7.2. Semi-group (R/I , ⊗) : Define multiplication ⊗ as

(4.7.1) (I + r) ⊗ (I + r ′) = I + (rr ′)

It is straightforward to check that the resulting structure satisfies a semi-group
structure. For the next definition to be correct, we have to assume that I is a
proper ideal of R.

Definiteion 4.7.3. Quotient Ring (R/I , [ ⊕, ⊗]) : Quotient structure construct-
ed by hinging commutative group (R/I , ⊕) and semi-group (R/I , ⊗) shows struc-
ture of a ring. It is called quotient ring or residue of R modulo ideal I .

Members of the quotient rings constructed in this way are in the form of I + r .
Note that the natural group quotient map now can be extended as the natural ring
map from ring R to quotient ring R/I . and we have,

(4.7.2) π (r)π (r ′) = π (rr ′)
where, π ∶ r z→ I + r . π is a surjective ring homomorphism. Also note that the
right multiplicative semi-group cosets Ir has not anything to do with the quotient
ring. If (R, ⋅) is a monoid then one could show that (R/I , ⊗) is a unitary ring, by
checking that I + 1 is the unity of monoid. Remember, I is a proper ideal of R and
hence 1 ∉ I .

Definiteion 4.7.4. Maximal Ideal : Ideal I in a ring R is a maximal ideal if for
any other ideal J in R we have J ⊆ I ⊆ R.

Definiteion 4.7.5. Prime Ideal : Ideal I in a ring R is said to be a prime ideal
if it is a proper ideal of R and if ab ∈ I implies a ∈ I or b ∈ I .

Definiteion 4.7.6. Principal Ideal Domain (PID) : An integral domain in which
every ideal is a principal ideal is called a principal ideal domain.

● every subring of a field is a domain.
● for every domain there is a field containing domain as a subring. This
containing field is called fraction field of the domain.
● a subfield of a ring R is a subring that is a field.

4.8. Modules

Definiteion 4.8.1. R-Module : An R-Module is a structure built of a duet of sets

and a quartet of binary operations, ([M,R] , [→+, ⊙, +, ⋅ ]) where, the substructure

(M,
→

+ ) is an abelian (commutative) group, and the substructure (R, [+, ⋅ ]) is a

ring. Additionally,
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(1) ⊙ is the action of Abelian group (R, ⋅) on the set M.
(2) M is an R-set with respect to ⊙ action. That is, as you might remember

from the definition (4.3.2) of a G-set, ∀x ∈ M we have (r1 ⋅ r2) ⊙ x =
r1 ⊙ (r2 ⊙ x); ∀r1 and ∀r2 ∈ R and e ⊙ x = x ∀x ∈M, where e is the unity
of (R, ⋅).

(3) we have (a + b)⊙ x = a ⊙ x
→

+ b ⊙ x .

Please note that we have differentiated between addition in group (M,
→

+ ) with
addition in the ring (R, [+, ⋅ ]). Action ⊙ maps addition + in the ring to addition
→

+ in the group M. You may notice that all properties of a G-set transfers to an
R-Module by action ⊙ of R on M.

Definiteion 4.8.2. Left R-Module : In the previous definition the action ⊙ of(R, ⋅) is defined at the left of the set M. Hence, it is a left R-Module.

Normally by an R-Module we mean a left R-Module.

Definiteion 4.8.3. Right R-Module : If the action ⊙ of group (R, ⋅) is defined
on the right of M then the R-Module is a right R-Module.

Definiteion 4.8.4. Commutative R-Module : An R-Module is told to be a com-
mutative R-Module when it is both left R-Module and right R-Module.

4.9. R-Algebras

Definiteion 4.9.1. R-Algebra : Assume R is a commutative ring then the duet

of sets and a quintet array of binary operations, ([M,R] , [●, →+, ⊙, +, ⋅ ]) where

(1) ([M,R] , [→+, ⊙, +, ⋅ ]) is an R-Module and

(2) (M, ● ) is a commutative semigroup.

(3) (M, [→+, ●] ) is a commutative ring and

(4) ∀r ∈ R we have (x1 ● x2)⊙ r = x1 ● (x2 ⊙ r); ∀x1 and ∀x2 ∈M.

Hence, in an R-Algebra two rings (R, [+, ⋅ ]) and (M, [→+, ●] ) become hinged

through the action ⊙.

Definiteion 4.9.2. Associative division R-Algebra : If (M, ● ) assumed to be a
group rather than a semigroup then R-Algebra is called an associative R-Algebra.

Definiteion 4.9.3. Inner Products in R-Module: It is possible to define a binary
operation ○ ∶ M ×M Ð→ R with certain properties to create a duet of sets and a

quintet array of binary operations, ([M,R] , [○, →+, ⊙, +, ⋅ ]).
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(1) ([M,R] , [→+, ⊙, +, ⋅ ]) is an R-Module and

(2) ○ is commutative.

(3) ○ is distributive over
→

+.
(4) ∀r ∈ R we have (x1 ○ x2)⊙ r = x1 ○ (x2 ⊙ r); ∀x1 and ∀x2 ∈M.

We should distinguish carefully between R-Algebras and Inner Products in R-
Modules, though they have an R-Module as a common part. The inner product
in R-Module structure has not those nice algebraic properties of an R-Algebra,
in being two hinged rings through the action of a group. For example, (M, ○ )
is not a semigroup and (M, [→+, ○] ) is not a ring. Nevertheless it become more

important when we create the similar structure of an inner product space on vector
spaces later. We also should always use modifier R- to distinguish it with a similar
structure, later we build on fields, where we use modifier K - to contrast it.

4.10. Fields

Definiteion 4.10.1. Field : A field is a division ring (R, [+, ⋅ ]) where (R, ⋅ )
is an abelian (commutative) group.

In a field both addition and multiplication are commutative. It is customary
to use the letter K as the set in the field in place of R and leave the letter R to be
used only when a ring is involved. Hence, we show a field as (K , [+, ⋅ ]).

4.11. Vector Spaces

Definiteion 4.11.1. K-Vector Space : A K-Vector Space is a structure built

of a duet of sets and a quartet of binary operations, ([V,K ] , [→+, ⊙, +, ⋅ ]) where,

the substructure (V, →+ ) is an Abelian (commutative) group, and the substructure

(K , [+, ⋅ ]) is a field. Additionally,

(1) ⊙ is the action of Abelian group (K , ⋅) on the set V.
(2) V is a K -set with respect to ⊙ action. That is, as you might remember

from the definition (4.3.2) of a G-set, ∀v ∈ V we have (r1 ⋅ r2) ⊙ v =
r1⊙(r2 ⊙ v); ∀r1 and ∀r2 ∈ K and e ⊙v = v, ∀v ∈V, where e is the unity
of (K , ⋅).

(3) we have (r1 + r2)⊙ v = r1 ⊙ v
→

+ r2 ⊙ v.
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Note that we have differentiated between addition in group (V, →+ ) with addi-

tion in the field (K , [+, ⋅ ]). Action ⊙ maps addition + in the field to addition
→

+

in the group V.
You may notice that all properties of a G-set transfers to a K -Vector Space by
action ⊙ of K on V.(K , [+, ⋅ ]) is called the set of scalars for the K -Vector Space.

Definiteion 4.11.2. Functional : A mapping f from K−vector space V to its
underlaying field K , i.e., f ∶V Ð→ K is called a functional.

Addition of vectors in a vector space is well-defined by the group structure

(V, →+ ). Therefore we can follow to this definition.

Definiteion 4.11.3. Linear Combination : Assume that we have n vectors
v1, v2, ⋯, vn in K−vector space V, and scalars α1, α2, ⋯, αn selected from an
indexed family {αi}i∈J of scalars in K. We can build a vector v using definition
4.11.1, as

v = (α1 ⊙ v1) →+ (α2 ⊙ v2) →+ ⋯→+ (αn ⊙ vn)
Or, when there is no ambiguity in the binary operations involved, we can simply
write this as

v = α1v1 + α2v2 +⋯ + αnvn

We call this a linear combination of vectors v1, v2, ⋯, vn.

Alternatively we can decompose v into vectors v1, v2, ⋯, vn.

Definiteion 4.11.4. Decomposing a Vector : Assume we have vectors v1, v2, ⋯,

vn taken from the index family {vi}i∈J of vectors and the vector v in K−vector space
V, then there exist scalars α1, α2, ⋯, αn such that,

v = (α1 ⊙ v1) →+ (α2 ⊙ v2) →+ ⋯→+ (αn ⊙ vn)
Or, when there is no ambiguity in the binary operations involved, we can simply
write this as

v = α1v1 + α2v2 +⋯ + αnvn

Or, even more compactly as,

v =
n∑
i=1

αivi

We call this a decomposition of vector v or resolving vector v into the components
v1, v2, ⋯, vn.

We show the decomposition as a column,

v =

⎛⎜⎜⎜⎝

α1v1

α2v2

⋮

αnvn

⎞⎟⎟⎟⎠
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Then the related co-vector can be shown as b∗ = (α1, α2, ⋯, αn) and sometimes is
called a row vector.
Kn defined so is a vector space by its own but in the context of vector space

([V,K ] , [→+, ⊙, +, ⋅ ]) the (α1, α2, ⋯, αn) is the corresponding co-vector of v

Definiteion 4.11.5. Span of a Vector Space : An index family {vi}i∈J of vectors
in K−vector space V, is said to span V if each vector v ∈V can be decomposed or
resolved into the finite number of vectors selected from the family of vectors {vi}i∈J .

As (V, →+ ) is an Abelian group so we have a 0 vector. Let us decompose this

0 vector.

Definiteion 4.11.6. Linear Independence of Vectors : Assume, for the 0 vec-
tor, we have a decomposition 0 = ∑n

i=1 αivi. Then we say the set of vectors
(v1, v2, ⋯, vn) taken from the index family {vi}i∈J of vectors in K−vector space
V are linearly independent if αi = 0 for all i = 1, 2, ⋯, n.

Definiteion 4.11.7. Basis of a Vector Space : A set of vectors B = (v1, v2, ⋯,

vn) taken from an index family {vi}i∈J of vectors in K−vector space V, is said to
be a basis for V if they are linearly independent and B spans V.

Definiteion 4.11.8. Finite Dimensional Vector Space : If the basis set of vec-
tors B = (v1, v2, ⋯, vn) are taken from a finite index family {vi}i∈J of vectors in
K−vector space V, then we say that the vector space V is a finite dimensional
vector space.

Later we are going to use the vector spaces in different contexts such as a
Hilbert space or a Banach space. In a topological context the idea of dimension
will be revisited in its own way.

4.12. K-Algebras

Definiteion 4.12.1. K-Algebra : Assume K is a field then the duet of sets and

a quintet array of binary operations, ([V,K ] , [●, →+, ⊙, +, ⋅ ]) where

(1) ([V,K ] , [→+, ⊙, +, ⋅ ]) is a K -vector space and

(2) (V, ● ) is a commutative semigroup.

(3) (V, [→+, ●] ) is a field and

(4) ∀r ∈ K we have (x1 ● x2)⊙ r = x1 ● (x2 ⊙ r); ∀x1 and ∀x2 ∈V.

Hence, in a K -Algebra two fields (K , [+, ⋅ ]) and (V, [→+, ●] ) become hinged

through the action ⊙.
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Definiteion 4.12.2. Associative division K-Algebra : If (V, ● ) assumed to be a
group rather than a semigroup then K-Algebra is called an associative K -Algebra.

Definiteion 4.12.3. Inner Products in K -Vector Space : It is possible to define
a binary operation ○ ∶ V ×V Ð→ K with certain properties to create a duet of sets

and a quintet array of binary operations, ([V,K ] , [○, →+, ⊙, +, ⋅ ]).

(1) ([V,K ] , [→+, ⊙, +, ⋅ ]) is a K -vector space and

(2) ○ is commutative.

(3) ○ is distributive over
→

+.
(4) ∀r ∈ K we have (x1 ○ x2)⊙ r = x1 ○ (x2 ⊙ r); ∀x1 and ∀x2 ∈V.
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CHAPTER 5

A Hint on Category and Universal Algebra

5.1. Morphism and Categories

Definiteion 5.1.1. Categorical Epimorphism : We say a mapping f is categor-
ically an epimorphism if for an arbitrary pair of mappings g and h the equality
gf = hf always implies g = h.

It is also said that in an epimorphism the composition of mappings satisfies the
right cancellation law. You can prove that a mapping f ∶ X Ð→ Y is a surjection
if and only if it is an epimorphism.

Definiteion 5.1.2. Categorical Monomorphism : We say a mapping f is cat-
egorically a monomorphism if for an arbitrary pair of mappings g and h the
equality g = h always implies fg = fh.

It is also said that in a monomorphism the composition of mappings satisfies
the left cancellation law. You can prove that a mapping f ∶ X Ð→ Y is an
injection if and only if it is a monomorphism.

5.2. Products

5.3. Universal Algebra

Definiteion 5.3.1. Alphabet : Any set of symbols is called an alphabet. An
element of an alphabet, hence, is a symbol.

Definiteion 5.3.2. Bag : This is a set that multiple occurrence of an element,
in contrast to sets, is important but similar to sets, their order of occurrence is not.
We use straight brackets to show bags.

Therefore, bags [a, b, c, a] and [a, b, c] are not equal but bags [a, b, c, a] and[a, b, a, c] are equal.

59
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Definiteion 5.3.3. List : List is a bag where order is also important. We use
parentheses to show a list. A list is actually an n−tuple. An empty list is shown by( ) or Λ.

In different contexts, a finite list is called a string or a word.
Therefore, lists (a, b, c, a) and (b, a, c, a) are not equal.
Lists are shown in parentheses and a separator comma between symbols. Strings
and words are shown with commas removed from the list; hence (baca) is a string
or a word.
The leftmost element of the strings (lists, words) is called head of the string. Re-
maining part is the tail.

Definiteion 5.3.4. Language : A language is a set of strings.

Definiteion 5.3.5. Grammar : A grammar is a set of rules to create new strings
from the alphabet of a language or from the existing strings of a language on the
condition of using only finite steps. Two important rule of any language is concate-
nation (join, juxtapositioning, paste) of strings and breaking (dividing, cutting) a
string.

Any concatenation and breaking of strings can be exhausted to a sequence of
join and cut of a single head element.

Definiteion 5.3.6. n−ary Operation : An n−ary operation on X is a mapping

nf ∶ X
n Ð→X. n is said to be the arity of nf .

Remember from that X0 has the empty set as its only element. Therefore, a
mapping from X0 to X is a nullary operation and gives f (∅), that is, a constant
in the co-domain X .
Similarly, a unary operation is a mapping from X1 to X . Remember X1 and X

are different.
One can make an alphabet of n−ary operations; that is, a set of certain number of
n−ary operations nf . For example, F = {0f, 1g, 2f, 1h, 2g, 1h, 0g, 2h, ⋯}. Such a
set is called a language of algebras. This word, algebra, has used with different
meanings in different contexts and is very confusing. We tried to give every usage
of this notion in this book, clearly cut in its own context. F has a subset of all
n−ary mappings shown by Fn. Therefore, for instance, F2 = {2f, 2g, 2h, ⋯}.
Any element nf ∈ Fn where n ≥ 2, but is finite, can be expressed as composition of
binary operation but it is not in the scope of this book to prove that. Therefore we
never encounter with operations more than a binary operation.

Definiteion 5.3.7. Algebra of type F : Assume we have taken a set of mapping
symbols from F to define a family F of operations on a set A with different arities
then we call the duet [A, F ] an algebra A of type F . A is called the underlying set
of the algebra [A, F ].

To emphasise f is an operation on a certain set A, we use the notation fA

when the context requires.
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CHAPTER 6

Symmetry and Transformations

6.1. Symmetric Groups

Definiteion 6.1.1. Symmetric Monoid MX : Assume X is a set. The set of all
mappings on X is said to be the symmetric monoid on X. Composition of mappings
assumed as the binary operation that reveals the monoid structure.

Here the identity mapping iX is the unity member of the monoid.

Definiteion 6.1.2. Symmetric Group SX : Assume X is a set. Then the set of
all bijections on X forms (with composition operator) a group called the symmetric
group on X, shown as SX . An element of SX is called a permutation.

Remember later to distinguish symmetric group with the group of sym-

metries of a shape, though they are related as will be seen.

Definiteion 6.1.3. Symmetric group of degree n : Let set X = {1, 2, 3, ⋯, n},
then the symmetric group is said to have the degree n. We show this group by Sn.

One might show that number of elements of the Sn is equal to n!. That is∣Sn∣ = n!. Each member of Sn is one permutation of set X .
Hence, we have a set of natural numbers sorted consecutively from 1 to n, and
a permutation shuffles them in a set of number with another arrangement. For
example 1 is not at its original place as the first member. Now it is in fourth place.
2 is at first place. 3 is at seventh place. 4 is at second place. 5 just happens to be
still at fifth place and so on. We see that jugstapositioning in Figure 6.1.

4 5 6 7

4 7

1 2

16 52

3

3

Figure 6.1. A permutation on X = {1, 2, 3, 4, 5, 6, 7}.
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62 6. SYMMETRY AND TRANSFORMATIONS

Remark 6.1.1. Notation: A permutation is shown by a row such as (2, 4, 6, 1, 5, 7, 3 ),
and frequently without commas separating the elements like, (2 4 6 1 5 7 3 ).

Definiteion 6.1.4. Inversion in a Permutation : In the resulting jugstaposition
of a permutation each occurrence of a number smaller than the first number in the
row is called an inversion. In the example of Figure 6.1, 1 is the only inversion.

In the set X , before permuting its elements to a new arrangement, numbers
are ordered consecutively upward. We are interested to know how each number has
become far from its original position and if we want to have the original order back
by moving each entry one position how many movements we should do.

Definiteion 6.1.5. Number of Inversion : We should add all the inversions of
the arrangement by taking the first entry until remains no inversion. Adding the
partial number of inversions together gives the total number of inversions. We show
this number with J .

Example 6.1.1. (Please refer to Figure 6.1) :

2, 4, 6, 1, 5, 7, 3 = 1

4, 6, 1, 5, 7, 3 = 2

6, 1, 5, 7, 3 = 3

1, 5, 7, 3 = 0

5, 7, 3 = 1

7, 3 = 1

Hence, J = 1 + 2 + 3 + 0 + 1 + 1 = 8

If you look at the figure 6.1 in the above example J is equal to number of
intersections of arrows with each other. This is the easiest way of calculating J . A
permutation could be an even permutation or an odd permutation.

Definiteion 6.1.6. Even Permutation : In an even permutation number of in-
versions J is an even number, similar to previous example 6.1.1.

Definiteion 6.1.7. Odd Permutation : In an odd permutation number of inver-
sions J is an odd number.

In Figure 6.1 have a look at the subset (1, 2, 4 ). They loop and end without any
other number comes into the permutation, like this 1 → 2; 2 → 4; 4 → 1 . Similarly,
we have the subset (3, 6, 7 ), where 3 → 6; 6 → 7; 7 → 3 . These permutations are
called factors of original permutation (2, 4, 6, 1, 5, 7, 3 ). We also note the singleton
factor (5 ). We write, as a convention, (2, 4, 6, 1, 5, 7, 3 ) = (1, 2, 4 ) (3, 6, 7 ) (5 ).

Definiteion 6.1.8. Alternating Group An : All even permutation of Sn form a
subgroup of Sn that is called the alternating group.
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6.1. SYMMETRIC GROUPS 63

One easily can show that this is an abelian subgroup. Perhaps the reader can
remember from chapter one that when we have a set X we can make another set
related to that set by gathering all mappings defined on that set. We called that
set a pre-set that can be shown as XX . We see that Sn ⊆ XX . We can be choosier
in selecting a certain subset of all the possible mappings on a set. For instance,
all linear mappings, or all mappings with the co-domain not the set X , but some
other set, for example all the mappings from set X to set of real numbers R. Here,
in defining symmetric groups, we selected all the bijections on the set X among all
the possible mappings. Then, the resulting set of mappings shows notable algebraic
structures of interest such as a group or ring or a vector space.

4 5 6 71 2 3

2 3 4 5 6 7 1

Figure 6.2. A cyclic permutation on X = {1, 2, 3, 4, 5, 6, 7}.
Definiteion 6.1.9. Cyclic Permutation : In cyclic permutation each element of

the row maps into the next member. The last member maps into the first element.
See Figure 6.2 on page 63.

Instead of referring, let me repeat few definitions from here, 4.3.

Definiteion 6.1.10. Action of a Group on a Set: Assume there is a binary
operation, shown with symbol ⊙, such that ⊙ ∶ G ×X Ð→ X . Mapping ⊙ is called
the action of G on set X .

Definiteion 6.1.11. G-set of a Set : Let ⊙ be an action of group G on set X .
We say X is the G-set if ∀x ∈ X we define

(1) e ⊙ x = x where e is unity in G.
(2) (g1 ∗ g2) ⊙ x = g1 ⊙ (g2 ⊙ x); ∀g1 and ∀g2 ∈ G, where ∗ is the binary

operation in G.

Elements of G are also called operators on X when the context requires that.

Note that in both definitions above, we took two members from G and X
respectively in that order and G is on the left of X . The result is an element in
X . We equally could define an action of G on the right of X .

Example 6.1.2. : Assume Z2 with a group structure acting on the sphere S1.
Define the action of [0] as the neutral action and [1] as half a circle rotation. The
S1 is a Z2−set. Similarly, action of group Zn on S1 can be defined, where [m] gives
a 2mπ/n rotation to any x ∈ S1 for m ∈ [m].
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64 6. SYMMETRY AND TRANSFORMATIONS

Definiteion 6.1.12. Xg−set : Let ⊙ be an action of group G on set X . A subset
Γ of X is said to be Xg−set if ∀x ∈ Γ we have g ⊙ x = x where g is an element in
G.

For example, a G-set X is an Xe−set.

Definiteion 6.1.13. GX−group (Stabilizer): Let ⊙ be an action of group G on
set X . A subset H of G is said to be GX−set or isotropic subgroup or stabiliser

of G if ∀g ∈ H we have g ⊙ x = x where x is an element in X .

GX−group is a subset (subgroup) of G, but Xg−set is a subset of X .

Definiteion 6.1.14. Transformation : Let Γ be any set. Then a bijection g∗ of

Γ to Γ, that is, g∗ ∶ Γ
bijectionÐÐÐÐÐ→ Γ is called a transformation of Γ.

Definiteion 6.1.15. Invariants of a Transformation : In transformation g ∶

Γ Ð→ Γ those points x ∈ Γ where g (x) = x, that is, points that their images are
themselves are called invariant points of transformation.

Definiteion 6.1.16. Group G∗ of Transformations of Γ(Transformation group
acting on Γ) Narrow Definiteion : Assume G∗ is a set of transformations on a set
Γ. If this set includes a neutral (identity) transformation and along each transfor-
mation it also includes its inverse transformation then one can recognize a group
structure in set G∗. Then set G∗is said to be a group of transformations of Γ in
the narrow sense.

Definiteion 6.1.17. Transitive Group G∗ of Transformations of Γ Narrow Def-
initeion : Assume G∗ is a transformation group acting on Γ. If there is a g ∈ G∗

such that for any pair of elements ξ ∈ Γ and ζ ∈ Γ we have g(ξ) = ζ, then group G∗

is called a transitive group acting on Γ.

Definiteion 6.1.18. Group G∗ of Transformations of Γ(Transformation group
acting on Γ)Narrow Definiteion : This is the set of all transformations on the set
Γ.

The group G∗ of all transformations on Γ is a transitive group.

Definiteion 6.1.19. Group G of Transformations of Γ(Transformation group
acting on Γ)Wider Definiteion : Assume G is a group, X is a set of transformations
on Γ (not necessarily a group). Then G is said to be a transformation group acting
on Γ in a wider sense if ∀g ∈ G there is x∗ ∈ X such that x∗ = τ(g), where τ is a
mapping from G into X with the property that τ(gh) = τ(g)τ(h).

Remark 6.1.2. Reader notices that gh is actually g ●h a group operation, while τ(g)τ(h) is
composition of two transformations τ(g)○τ(h) in X, a set which has not any group structure
yet, but is to be structured by group structure of G. (N.B., ξ = τ(g) is one transformation

in X and ζ = τ(h) is another transformation in X different from ξ, but both acting on
Γ as a common domain of theirs, say, β = ζ(α) and γ = ξ(β); hence, ξ(ζ(α)) = γ, where
α, β, γ ∈ Γ; that is, ξ ○ ζ) Don’t confuse them as being the same element, as they both are
images under τ . All these elaborations are to reach to that goal; givingX structure of a group.



www.m
es

sia
hp

sy
ch

oa
na

lys
t.o

rg

6.1. SYMMETRIC GROUPS 65

Condition imposed on the τ guarantees (please have a try to prove1) that G∗ = τ(G) ⊆ X
has got a neutral transformation of Γ and an inverse of each transformation along with some
transformations; hence, a minimum core of a group G∗ of transformations in its narrow
sense, exists among the elements of X. By corresponding G through mapping τ we establish
a homomorphism from G to this group. Then group G is a group of transformation acting
on Γ in its wider definition. And the image G∗ = τ(G) is the core of X that makes a group
of transformation in the narrow sense. Therefore, now τ ∶ GÐ→ G∗ is a surjection. We know
that in nature there is no structure. There are no rotation no reflection and no symmetry. Still
we have abstract group structures or vector spaces or algebras which we like to recognize them
among shapeless nature, to make our interpretation of nature easier or to make us able to
utilize a natural phenomenon. We have done it from ancient Egyptian, Babylonian and at the
crest of them Greek mathematical abstractions to present time. Groups of transformations
are very useful tools for study of nature, and group theory, actually started from the study of
group of transformations. For this reason we followed Pontryagin [26] to distinguish between
a narrow sense and a wider definition. This takes us to define a group of transformations
acting on a set up to an isomorphism.

Example 6.1.3. Antipodal map transformation : The mapping that sends a point
on the circumference of circle (generally, any sphere Sn) to its diagonal opposite
point is called an antipodal mapping. Among transformations of the plane we recog-
nise this as ξ(x) = −x, where x ∈ S1. Applying this transformation twice you’ll be
back to the same point ξ(ξ(x)) = x or ξ(ξ(x)) = ǫ(x), the identity mapping. In
language of group theory we have a subset of all transformations on plane which
can be identified as a group, G∗ = {ξ, ǫ}. Thus g∗ = g∗−1, g∗2 = e, ∀g∗ ∈ G∗. On
the other hand, we have group G = {[0], [1]} acting in wider sense on Sn which is
isomorphic to G∗ that acts on a narrow sense. We always prefer to use group G.

Therefore, it is more convenient to use groups such as Zn when talking about
rotation and such things on the plane rather than ξ(x) and ξ(ξ(x)), and so on.
You already might be puzzled what was about a set (recognisable as group) such
as G = {[0], [1]} to rotation and such.

Definiteion 6.1.20. Kernel of Ineffectiveness of Group G of Transformations
of Γ : Kernel of surjection τ is called the kernel of ineffectiveness of G.

In this terminology, it is ineffective in the sense that all the corresponding
members of G that map into the neutral transformation in G∗ come together in the
form of the kernel. They act as identity on Γ.

Definiteion 6.1.21. Effective Transformation Group : If τ is an isomorphism,
that is, it is a bijection then G is an effective transformation group

In this case the kernel of the injection is the single identity transformation
in G. Now G can be identified with G∗ and elements of G can be regarded as
transformations of Γ.

Definiteion 6.1.22. Group G of Transformations of Γ (Transformation group
acting on Γ) Wider Definiteion : If the set X contains all transformations on the

1For example, let the neutral element e ∈ G then for g ∈ G, x∗ = τ(g) = τ(e ● g) = τ(e)○ τ(g) =
τ(e) ○ x∗; hence, τ(e) should be a neutral element in G∗ and we show it as e∗ ≜ τ(e).
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66 6. SYMMETRY AND TRANSFORMATIONS

set Γ then the group G defined in 6.1.19 is the group of transformations on Γ in a
wider sense.

Frequently we show the group G of transformations acting on a set Γ as (G, Γ).
Definiteion 6.1.23. Transitive Group G of Transformations of Γ, Wider Def-

initeion: Assume G is a transformation group acting on Γ in the wider sense. If
G∗ = τ(G) is a transitive group in narrower sense then group G is called a transitive
group acting on Γ in wider sense.

The group G of all transformations on Γ is a transitive group.

Definiteion 6.1.24. (G, Γ) similar to (G′, Γ′) : A pair of mappings (f, φ)
is said to be a similarity between (G, Γ) and (G′, Γ′) if f ∶ G

isoÐ→ G′ is an

isomorphism and φ ∶ Γ
injÐÐ→ Γ′ is an injection. In this case, the pairs (G, Γ) and(G′, Γ′) are called similar.

Definiteion 6.1.25. Orbit of x under σ : Assume X is a set and x ∈ X. Also,
let σ be a permutation in symmetric group SX of permutations of X. Then we
define the orbit of x under σ as the set of all xσn where n ∈ Z. We show this orbit
as Ox,σ.

Orbit should bring in mind the notion of a coset. We have a set of transfor-
mations {σ, σ2, σ3, ⋯, σn} mapping (permuting) x once and then twice and so on.
Also consider the notion of a submodulus mapping. It is good if the last mapping
spits out the x back. But it is not necessary from the definition. Orbit is the track
of an element x inside the set X traveling with or riding on a certain mapping σ.
Also note that we usually show a mapping of an element x of a set by something
like f(x), mapping on the left side and the element on the right side. Frequently,
in algebra, we do not use parenthesis and show the mapping on the right side and
the element on the left side, such as xf . More generally we can have,

Definiteion 6.1.26. Orbit of ξ under G: Assume G is a group acting by ⊙ on
set Γ. Then orbit of each ξ ∈ Γ is the set of all ζ ∈ Γ defined as the equivalent class[ξ] such that, [ξ] = {ζ ∣ ζ ∼ ξ; ζ = ξ ⊙ g; ∀g ∈ G}. Orbit [ξ] is called fiber of ξ, too.
See, Figure 6.3.

It is all the images of ξ under the operators g ∈ G. Note that, as usual, we show
action of group ⊙ from right on its left side; hence ξ ⊙G is the same as [ξ]. (Note,
let ζ1 = ξ ⊙ g1 and ζ2 = ξ ⊙ g2 Then ζ1 ∼ ζ2 and ζ1 ∈ [ξ] and ζ2 ∈ [ξ].)

Definiteion 6.1.27. Orbit Set or Quotient Set of Γ by Group G: We define
the quotient Γ/[ξ] (partitioning of Γ by group G) as the orbit set of Γ and show it
by, Γ/G, though the last notation could be confusing (Please, see also 2.6.4). See,
Figure 6.4.
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G ΓΓ

ζ1

ζ2

ζn

ξ

Fiber of ξ

gn

g2

g1

[ξ]
ζ1

ζ2

ζn

Figure 6.3. Fiber of ξ under (or with respect to) group G. In
this case is (but not limited to), say, {ζ1, ζ2, ⋯, ζn }.

G Γ

ξn

ξ2

ξ1

ζn1 ζn2 ζnn

ζ21 ζ22 ζ2n

ζ11 ζ12 ζ1n

[ξn]

[ξ2]

[ξ1]

g1

g2

gn

Γ partitioned by G

Orbit Set Γ/G

Figure 6.4. Partitioning of Γ by group G

Example 6.1.4. Torus as orbit set of group of translation of plane : See, Fig-
ure 6.5. In 6.6 second generator of the torus is shown as σ, acting on the lines of
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68 6. SYMMETRY AND TRANSFORMATIONS

the plane in a direction not parallel to lines ∆k. The resulting torus is not drawn;
only cylinder of horizontal partitioning is depicted.

τ
ξ1

[ξ1]

∆1
ζ1

Group G∆ of horizontal translations:

Group generator is the translation τ .

∆/G∆

Orbit set (space) of group G∆

acting on line ∆1 is a circle.

Figure 6.5. Partitioning of the line ∆ by group G of horizontal
translations of the line.

Example 6.1.5. Klein Bottle as orbit set of group of glide transformations of
plane : Please have a look at Figure 6.8. Generators of the bottle are shown as
σ and τ , acting on the so-called fundamental region of the plane depicted as
a diamond with black lines. Each generator is a glide reflection acting on zigzag
lines of the plane. Each generator creates a Mobius strip if acting alone. Compare
it with translation that creates a cylinder. Two mobius strips combined create an
orbit set as a Klein bottle. Two narrow red doted lines are reflections of ξ1 and
the other edge of the diamond.The bottle is not drawn, but corresponding points of
transformations are shown with similar letters. Diamond transformed to a cross
with dotted red and green line segments. To put line ξ1 on its corresponding line
ζ1, point (a) translates and turns until it gets to its corresponding point (a) on
the tip of the cross. Every other set of criss-crossed lines of plane transforms to
one Mobius strip. If you are good in the drawing you notice that beginning with a
directed circle you end up with a circle inverted in direction to the first one but fully
adjusted on it. It is a Klein bottle (Armstrong [4]).

Example 6.1.6. Sphere as orbit set of group of half-turn transformations of line
segments of plane : See, Figure 6.10. Fundamental region of plane of transforma-
tion is repeating triangles (Figure 6.9)that fills the plane. Each half-turn transform



www.m
es

sia
hp

sy
ch

oa
na

lys
t.o

rg

6.1. SYMMETRIC GROUPS 69

τ
ξ1

[ξ1]

∆2

ζ1

∆1/G∆

Orbit set (space) of group G∆ acting on horizontal
lines of plane is a cylinder.

[ξ2]
∆2/G∆

[ξn]
∆n/G∆

∆1

∆n

Group G∆ of horizontal translations

Group generator translation τ

σ

Figure 6.6. Partitioning of the plane by group G of horizontal
translations of horizontal lines.

alone acting on plane has a cylinder as the orbit. Each line bearing the shown
half-turn is identified with a circle in a plane different with other two. Three non-
parallel planes define a sphere in the same way as three mutually intersecting lines
define a circle.
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70 6. SYMMETRY AND TRANSFORMATIONS

(a)

(b)

(ξ1)
b

(ζ1)
b

Figure 6.7. One generator of group acts on the plane.

(ξ1)

(ζ1)
τ

(a)

(a) (a)(b)

(b)

(b)
σ

(c)

(c)

(c)

✻ ✻

Figure 6.8. Partitioning of the plane Γ by group G of glide trans-
formation of plane.
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Figure 6.9. Half-turn transformations of plane.

Partitioning of the line ∆ by group G of horizontal translations of the line

Figure 6.10. Sphere as orbit set of half-turn transformations.

Definiteion 6.1.28. Stabilizer Hξ (shallow) : Assume G is a group acting by ⊙
on set Γ. Then, we have Hξ = {g ∈ G ∣ ξ ⊙ g = ξ}. See, Figure 6.11.

Definiteion 6.1.29. Stabilizer Hξ (deep) : Let G be a transitive group of trans-
formations acting in a wide sense on set Γ. Assume g∗ ∈ G∗ is the associated
transformation of g ∈ G such that, g∗(ξ) = ζ; ξ, ζ ∈ Γ, where ξ is fixed in Γ. See,
Figure 6.12. We define set ψ(ξ, ζ) = {g ∈ G ∣g∗(ξ) = ζ}. Then, stabilizer Hξ is
defined as ψ(ξ, ξ).

It is clear that Hξ is a subgroup of G. Also each ψ(ξ, ζ) is in the form of
gψ(ξ, ξ), for some g ∈ G (hint: since G is transitive); hence, a left coset of ψ(ξ, ξ).
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✲

g1

g2

gn

ξ ξ

G Γ ΓStabilizer

Figure 6.11. Stabilizer of ξ under (or with respect to) group G.
In this case is (but not limited to), say, {g1, g2, ⋯, gn }.

g1

g2

gn

ξ

ζ

G Γ Γψ(ξ, ζ)
Figure 6.12. ψ(ξ, ζ) under (or with respect to) group G. In this
case is (but not limited to), say, {g1, g2, ⋯, gn }.

Remark 6.1.3. ψ(ξ, ζ) is a mapping : For each ξ ∈ Γ we have a set of equivalent elements
of G partitioned with the corresponding Hξ. Therefore, we can speak of ψ as a mapping of
Γ to G/Hξ . That is, ψ ∶ Γ Ð→ G/Hξ, and ψ ∶ ξ ↦ Hξ. This mapping is a bijection. When
there is no risk of ambiguity, we write it just as ψ(ξ).

Assume H is a subgroup of G. Consider action of H , as a group on the G, as
a set. Then orbit of x ∈ G is xH . These orbits for all x ∈ G create a partition G/H
for G.
On the other hand, we have cosets xH that, in their own turn, create a similar
partition G/H for G.
It is worthwhile to distinguish these two as one which involves “action“ and “orbits“
and the other just algebraic cosets.

Definiteion 6.1.30. Affine Space : Assume A is just any set, and V is a vector
space over field K. We know, (V,+) is an abelian group. We define an action of
this group on the set A by a mapping +A ∶ A × V Ð→ A such that
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a

b

L

Figure 6.13. Oriented Line Segment L.

(1) a +A (v +w) = (a +A v) +A w, where v, w ∈ V .
(2) ∀a, b ∈ A there is a unique v ∈ V such that b = a +A v.
(3) a and b are called initial point and terminal point of the vector v.

We show an affine space built out of the V by AV or AV . When there is no
ambiguity we drop V , as A or just simply A.

I have differentiated the affine addition (which is a group action) by putting
a subscript A next to it. Most of the time people omit that subtlety, and that is
the reason that many do not appreciate the subtle difference of affine space with a
vector space. Therefore an affine space is lacking any structure. We give it part of
the structure of a vector space through the group underlayer of that vector space.
From the before mentioned item (2) we notice that a = a+A0. Item (2) can interpret
the meaning of the group action as translation of a point a ∈ A into another point
b ∈ A. Item (3) bounds the free vector v between fixed points a and b, changing
a mathematician movable vector, with no intrinsic position, into a physical vector
where the point of the insertion of the vector and its direction has a meaning and is
important. This new vector object created by the action of the group, has also an
additional line of action that carries the vector (carrying line of the vector). You
appreciate that each vector now can be written as an equivalent class of points of
AV . By the way, please note that many modern mathematicians are very careful in
clarifying if any operation is from the right-side or from the left-side. When there
is a danger of ambiguity, I follow that rule, but not when the things are obsessively
trivial.
Throughout the algebraic definition of groups, rings, and fields and then definition
of modules and vector spaces we have not introduced any notion of order. We did
not need to supply these structures with any order relation.

Definiteion 6.1.31. Oriented Line Segments : Configuration ab, where a, b ∈ A,
satisfying item (2) of definition 6.1.30 is said to be an oriented segment in A. a is
called the initial point and b the final point of ab. We say ab is oriented from a to
b. We call ab a line segment, in contrast to vector v and show it as L.

We can visualise an oriented segment L as a line segment in plane and put an
arrow head on the line to further contrast it with a vector in a vector space. Please
see Figure 6.13.
An oriented line segment is also called a directed segment and is said to have an
orientaion or a sense from a to b.
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Definiteion 6.1.32. Labelled Oriented Line Segments : Assume L is a set of
oriented line segments and r is a set called the set of labelles. Then a mapping
l ∶ L Ð→ r is said to be a labeling of the line segments in L.

We are allowed to give the same label to different segments if it is desired.
Now consider a point c ∈ A such that c = a +A sv where s ∈ K. Vector sv is in
the same direction or opposite direction as of the vector v, but scaled. In such a
case we say point c is on the line ab. The set of all such points, c, is said to be an
oriented line in L. This is the line of action of the physical vector a⃗b. We show
this line by (L) or λ. Hence, λ = {c ∈ A ∣ c = a +A sv, ∀s ∈K}. If things have gone
well so far and K be an ordered set, then for 0 ≤ s ≤ 1 we say c is a point on the
line L, between a and b. This transformation imposes an order on points of A. We
can show it by writing a ≤ c ≤ b.
Frequently the world is not as complicated and we have A = K. In such cases, we
can write c = (1 − s)a + sb. Note that the affine space is now K not the K.

Definiteion 6.1.33. Homogeneous Points : Assume b = a +A v and c = a +A sv.
Then b and c are said to be homogeneous points on λ. s is called the ratio of
homogeneity and could be negative or positive. a is called the origin of homogeneity.
If s = 0 then a and be b will be the same point of A.

Definiteion 6.1.34. Reflection Points : Assume b = a +A v and c = a +A sv

and s = −1. Then b and c are said to be reflection points. Point a is called the
origin of reflection. Nevertheless, these two points are homogeneous with ratio of
homogeneity s = −1.

Definiteion 6.1.35. Congruent Segments : Assume b = a +A v and d = c +A v.
Then segment ab and segment cd are said to be congruent segments.

We could start from a set of points and define a vector as the class of all
congruent oriented segments identified as one. That is the abstract mathematical
free vector in contrast to bound segments. However such approach would be out of
fashion.

Definiteion 6.1.36. Rotation of an Oriented Segment : Assume b = a +A v and
c = a+A w. Then ca is said to be rotation of ba around the pivotal point a into the
direction w. Point a is called the invariant point of rotational transformation.

It can be noted that there exist a vector u such that c = b+A u. Then u is said
to be the direction of rotation.

Definiteion 6.1.37. Translation of an Oriented Segment : Assume b = a +A v

and d = c+A v and d = b+Aw. Then segment cd is said to be translation of segment
ab in direction of vector w.

One always can find such a vector for two congruent segment.



www.m
es

sia
hp

sy
ch

oa
na

lys
t.o

rg

6.1. SYMMETRIC GROUPS 75

Definiteion 6.1.38. Inversion of an Oriented Segment : Assume b = a +A v.
We can assert that a = b +A (−v). Then ba is said to be the invert of the ab.
Interchanging a and b is called an inversion operation, or a half-turn (around the
middle of the segment).

Please differentiate between inversion and the reflection.

Definiteion 6.1.39. Convex Subsets of A : A subset B of A is said to be convex
if for any pair of points a, b ∈ B we have c = (1 − s)a + sb ∈ B for some s ∈K.

Definiteion 6.1.40. Convex Closure of Subsets of A : Assume the subset U of
A is not convex but there is a subset V such that U ⊂ V and V is convex. Then the
intersection of all such convex subsets V = ⋂V is said to be the convex closure of
U . This is the smallest convex subset containing U

We have been relax in detailing the definition.

Definiteion 6.1.41. Identification on a Line Segments : Assume K is ordered
and U = {s ∈K ∣0 ≤ s ≤ 1} and there is an order preserving bijection mapping φ ∶
U Ð→ L, where L is the oriented line segment ab in A. Then we say points of L
are identified by points in K. By this, we mean each point of L for any L ∈ A can
be recognised with some s ∈K. φ is called parametrization of the line segment L.

L or ab defined in this way is said to be the unit segment on the extended line(L) or λ. Extension of φ ∶K Ð→ λ is the parametrization of the line λ.

Definiteion 6.1.42. Coordinate Map on a Line : Let φ ∶ K Ð→ λ be a para-
metrization of λ then the inverse of φ that is φ−1 ∶ λÐ→K is said to be a coordinate
map or a chart map on λ.

Coordinate map is also called a coordinate system on λ.

Definiteion 6.1.43. Transition Map : Assume ψ is another parametrization of
the line λ, besides φ, then for a point s ∈ K we have point c = ψ(s) ∈ λ. Now
for c ∈ λ, we have t = φ−1(c) ∈ K. Therefore, t = φ−1(ψ(s)) maps s ↦ t, and the
composition map φ−1 ○ ψ is a transformation on K. Alternatively, c ∈ λ we have
coordinate s = ψ−1(c) ∈ K. Now for s ∈ K, we have d = φ(s) ∈ λ. Therefore,
d = φ(ψ−1(c)) maps c↦ d, and the composition map ψ ○φ−1 is a transformation on
λ. Either of these composition maps is said to be a transition map for λ

Definiteion 6.1.44. Substitution Map : Assume λ ⊂ A, and let c, d ∈ λ any
successive chain of bijections that map c ↦ d is called the substitution of c by d.

Definiteion 6.1.45. Homogeneous (Linear) Transformation : Assume ab is an
oriented segment such that b = a +A v. Any transformation that maps b ↦ d such
that d = a +A w, where w is another vector in V is called a linear homogeneous
transformation or operator on the affine space A.
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Note that this transformation keeps the initial point of ab fixed but changes
the length (the final point) and the direction of ab. Homogeneous transformation
rotates and scales the affine vector ab. Having ab parametrized as the unit then ratio
of the ad to this unit shown by k is called the ratio of homogeneity (homogeneity).

Definiteion 6.1.46. Affine (Linear) Transformation : Assume b = a +A v and
d = e +A w, where v, w ∈ V then a transformation of ab to de that maps a ↦ d and
b↦ e is called an affine transformation.

We know there exists a u ∈ V such that d = a +A u. This is the homogeneous
transform of ab to ad. Then we have, a = d +A (−u) which is the segment da; the
inversion of ad. Now another homogeneous transformation transforms da to de;
(Figure 6.14).

ad
Inversion

Transformation
✲ da

ab

H
o
m

o
g
e
n
e
o
u
s

T
r
a
n
s
fo
r
m

✻

Affine

Transform
✲ de

T
r
a
n
s
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r
m

H
o
m

o
g
e
n
e
o
u
s❄

Figure 6.14. A commutative diagram for affine transformation.

Assume we are in a three (n) dimension (normed linear) space (n = 3) and we have
four points (m = n + 1 = 4). Select a k < 3 (k < n), for example k = 2. If no three
points (l = k+1 = 3) lie on a line, that is, on a subspace with dimension < k (k = 2),
then these four (m) points are said to be in general positions. Therefore,

Definiteion 6.1.47. General Position : Assume n + 1 points a1, a2, ⋯, an+1 in
an affine space A with underlying vector space of dimension n are arranged in a
way that for a k, (k < n) no m, (m = k + 1) points selected arbitrary from them lie
on a subspace with dimension less than k. Then these m points are said to be in
general position.

Definiteion 6.1.48. Simplex : A convex closure of a set of points in a general
position is said to be a simplex.

Later we understand there are other restrictions on definition of a simplex.
We are not able to introduce the notion of isometry at this stage as we have not yet
defined a length or as we understand from the word “isometry“ a meter, or a norm
for vectors. These need to be familiar with the idea of measures and metric spaces.
Just assuming the reader is familiar with the “length“ in ordinary Euclidean space
we are going to have a first sight of some terminologies.

Definiteion 6.1.49. Isometry (congruent tranaformation, or a congruence): Is
a transformation on a space (on a set) that preserves length. There are two types
of isometry: (1) direct isometry. (2) opposite isometry.
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Definiteion 6.1.50. Identity Transformation : Is an isometry that leaves all
points of space as invariant.

Definiteion 6.1.51. Rotation of Space : Is an isometry that leaves only one
point as invariant. The invariant is called centre of rotation.

Definiteion 6.1.52. Translation of Space : Is an isometry that leaves no point
as invariant.

Definiteion 6.1.53. Reflection of Space : Is an isometry that leaves a line as
invariant. This invariant line is said to be the mirror for the reflection.

Opposite isometry is product of odd number of reflections. Direct isometry is
the product of even number of reflections. By product, we mean the product of
transformation mappings.

Definiteion 6.1.54. Inversion : Is an isometry f on A ⊆ Γ such that f (f (x)) =
x, ∀x ∈ A.

Definiteion 6.1.55. Half-turn (Reflection in a Point, Central Inversion) : Is a
180○ rotation through the invariant point. Half-turn is an isometry.

Definiteion 6.1.56. Glide Reflection : This is combination of a reflection and
a translation.

Definiteion 6.1.57. Symmetry : Symmetry transforms a shape into itself upon
an isomery on the space.

All the symmetries possible on a shape create a group under the binary oper-
ation of product of transformation, called group of symmetries of that shape. Any
group of symmetries of a shape has its own generator.

In general we can have group of isometries of space; in simplest case group of
isometries of plane.

6.2. Products of Groups

Remember that a group is always equipped with a binary operation. On dif-
ferent context we might call this binary operation as addition and talk about the
sum of two elements of the group. Yet, in other occasions that might be called mul-
tiplication and we call the result of the binary operation product of its elements.
Further, in some sets, we recognise two structure on the same elements co-existing
side by side. Such is the situation, say, with, the set of integers. In such cases, we
have to separate them by giving separate names for the underlayer structure binary
operations: one called addition and the other multiplication. In such situations we
might, additionally, discover new structures such as rings and fields.
Remember in ordinary arithmetics we have the addition group of integers (Z, +)
and multiplicative group of integers (Z, ×) as two different things.
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Also, we are going to have the notion of the direct sum of groups and the free

product of groups. In their definition the Cartesian product of sets is also in-
volved, that should be contrasted with other concepts.
Already we are familiar with a free subgroup of a group. Now we develop an artifi-
cial technique to make a free group out of a set. At the start assume we have a set
X = {a, b, c, ⋯}. We are going to create a new set Γ =∐2

i=1X = ⋃2
i=1 {(x , i) ∣∀x ∈ X }

which is disjoint union of X with X . Then carefully we turn Γ into a group.

Definiteion 6.2.1. Free Inverse : Assume (x, i) and (y, j) in Γ. They are called

inverse of each other if x = y but i ≠ j. We define (x) = (x, i) and (x)−1 = (x, j).
We drop parenthesis to keep them simpler to use; hence, x = (x, i) and x−1 = (x, j)

Definiteion 6.2.2. Free Word : A free word is a finite arbitrary selection of
elements of Γ that allows repeated elements; such as (ace−1cbaaadfecef−1). We

can show any free word with an arbitrary symbol such as g = (ace−1cbaaadfecef−1).
Remark 6.2.1. In some context x and x−1 are called flip with respect to each other.

Therefore, a free word is an element taken from ⨉n
i=1 Γ or Γn. You recognize

that any word has a length of some n.

Definiteion 6.2.3. Multiplication of Free Words : Assume g1 and g2 are two
free words. Their multiplication is g1g2 or g2g1. That is to put the words next to
each other (in juxtaposition).

For example, (ace−1cbaaadfeef−1) (dca−1cbahcdfeeh−1)
= (ace−1cbaaadfeef−1dca−1cbahcdfeeh−1)
Conversely a word could be decomposed to smaller words; e.g., (ace−1cbaaadfeef−1)
= (ace−1c) (baa) (adfeef−1)
It is convenient to write the repeated words next to each other as powers; hence,(ace−1cbaaadfeef−1) = (ace−1cba3dfe2f−1). Implicitly, we agreed that aman =
am+n for a ∈ Γ and m, n ∈ Z. Next we understand that, a0 = /e = ( ). I use slashed /e
in place of e or instead of using 1 for the unfortunate situations that Γ may include
symbol e or symbol 1. As it is customary in universal algebra to use ( ) for the
empty list or the empty word, we also might be able to use it.

Definiteion 6.2.4. Free Neutral Word : A neutral word is a word in the form(aa−1) or (a−1a). We show it by /e or ( ).

A neutral word has a zero length.

Definiteion 6.2.5. Reduced Word : A word is reduced when all the neutral words
in it are exhausted.

Hence, (ace−1cbd−1aa−1dfeef−1) is reduced to (ace−1cbd−1dfeef−1) and then

to (ace−1cbfeef−1).
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Definiteion 6.2.6. Free Group : The set G of all reduced words generated from
Γ together with free multiplication is a group. This group is called the free group on
X.

Remark 6.2.2. Note that x ∈X can be identified with an x ∈ G that is we can say X1 ⊂ G.
Most of the time study is limited to the case that X = {a}; that is X is a singleton.

Definiteion 6.2.7. Generated Element : Assume {hα}α∈J is a family of ele-
ments of G. Let g = h1h2⋯hn, where n is a finite number and hj , j = 1, ⋯, n could
be repeated in the statement. Then g is said to be generated from the generating

family {hα}α∈J .

Set h1, h2, ⋯, hn means taking n arbitrary elements from the family {hα}α∈J .
Sometimes, or frequently this selection is shown as hα1

hα2
⋯hαn

, rather, to empha-
sise on the index α.

Definiteion 6.2.8. Group Generated by Subgroups : A group G is said to be
generated by a family of its subgroup Hα∈J indexed by J whenever each element
g ∈ G can be expressed by a finite product of the elements of subgroups Hα. That
is, g = hα1

hα2
⋯hαn

. The product hα1
hα2
⋯hαn

is called a nomial or a term.

Having been familiar with the notion of free words, now I define word in a more
strict context. But it is easier to use them to create groups.

Definiteion 6.2.9. Word : Assume G is a group generated by a family of its
subgroup Hα∈J indexed by J . As said, any g ∈ G can be expressed by multiplication
of finite number of elements from subgroups Hα. An ordered set of these elements
shown by (hα1

, hα2
, ⋯hαn

) is said to be a word of length n. Each hαk
, in the word

is called a factor.

In some contexts a word is called a list. I do not use it, and spare list for usages
in logic, automata, and computer theories. Note that one or more factors might
belong to the same subgroup, say, Hαm

. Therefore, each g ∈ G can be written as
h1h2⋯hkhk+1⋯hn, where hk belongs to some Hαm

.
As we did not make the group G and its subgroups restricted to be Abelian (com-
mutative), we cannot generally rearrange elements of each product.

Definiteion 6.2.10. Reduced word: It could be that in h1h2⋯hk−1hkhk+1⋯hn
two or more factors next to each other such as hkhk+1 belong to the same Hα. This
reduces the length of the word to n − 1 or even smaller. This reduced size word is
called a reduced word.

Remark 6.2.3. All the subgroups generating G include an identity element e. In creating
a word we do not participate this element. That always reduces the size of the word, being
neutral. What if we have a word such as (hαm , h

−1
αm
). This reduces to a neutral (unity)

element (e) and disappears. Hence, to take care of degenerated case, we define empty set as
a word of length zero.
Consider reduced word of g = g1g2⋯gm and the reduced word of h = h1h2⋯hn, then the word
gh = g1g2⋯gmh1h2⋯hn is a reduced word if gm and h1 both belong to the same subgroup.
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Please note that the reduced word is a finite set, though there is no restriction
on indexing set J to be finite and therefore the indexed family of subgroups could
be infinite and even uncountable. To create a word we have to take factors from
certain finite number of subgroups in the family. A certain subgroup might be used
more than once, but not next to each other; in which case reduces the word length.

Definiteion 6.2.11. Unity-joint Subgroups : Assume Hα∈J is a family of sub-
groups of G indexed by J . We say they are unity-joint if for α, β ∈ J and α ≠ β we
have Hα ∩Hβ = e, where e is the neutral element of G.

In contrast to a (mutually) dis-joint family, the sets of this family are mutually
joint in their common unity element. If it was not for the common element e they
were mutually disjoint. Mutually hints to the fact that any pair you select from
the family should have this property. In contrast, two subgroups Hα and Hβ could
have more than one element in common; in such case they are not unity-joint.

Definiteion 6.2.12. Uniquely Represented Elements: Assume g ∈ G and Hα∈J

a unity-joint family of subgroups of G indexed by J . If we can factorize or show
g, in terms of elements taken from Hα, only in one possible way, then we call it a
uniquely represented element with respect to that family of subgroups. Further we
assume that the related word is reduced. The neutral element e ∈ G is defined as
uniquely represented element.

Note that we have not assumed G or any of its subgroups as an Abelian group.

Definiteion 6.2.13. Free Subgroup of a Group : Assume A is a subset of the
group G then the intersection FA of all the subgroups of G that contain A is called
the free subgroup of G over the set A.

FA = ⋂
∀Hα⊆G

Hα such that A ⊆Hα and Hα a subgroup of G.

Definiteion 6.2.14. (Internal) Free Product Group : The set of all uniquely
represented elements as defined in 6.2.12, taken from a unity-joint family Hα∈J of
subgroups of G, make a subgroup of G. If the group G coincides with this subgroup ,
then it is said to be the free product of these subgroups. We show it by G =∏∗α∈J Hα.

In the previous definition, we contrasted the group, by adding the modifier
free, compared with the definition 6.2.8. I also added a modifier internal in the
bracket to emphasise on the fact that the subgroups of the group are involved.

Definiteion 6.2.15. External Free Product of Groups : Assume we have a group
G and a family of groups Hα∈J indexed by J , not subgroups of G. Suppose the
family of injections iα ∶ Hα Ð→ G is a family of monomorphisms, such that G is
the (internal) free product of iα(Hα) (check that they are unity-disjoint). Then, we
say G is the external free product of the family Hα. We show it by G =∏∗α∈J Hα.
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Next we are going to define what is the direct product of groups. We start by
informally explain it in the beautiful way that it first conceptually emerged as a
group of mappings. Then the more modern definition will be presented.
Assume we have an indexed family of groups H = {Hj , j ∈ J}. Define the set
mapping α ∶ H Ð→ ⋃H such that α (Hj) = hj , where hj ∈ Hj for each group
Hj . We are going to make a group G from the family α of all these mappings, by
assuming the composition of mappings as the binary operation of group; that is,
γ = αβ means γ (Hj) = (αβ) (Hj), and this means γ (Hj) = α (Hj)β (Hj). First
define ǫ (Hj) = ej , where ej is the unity (neutral) element of Hj . Then, inverse of
a mentioned α is α−1 = β such that β (Hj) = h−1j ; that is, α−1α = αα−1 = αβ (Hj) =
hjh

−1
j = ej = ǫ (Hj). This group is called the full direct product of the family of

groups {Hj}j∈J .
Now consider a subgroup G∗ of G such that any α ∈ G∗ assumes values α (Hj) = ej
for all, but for a finite number of j’s. This is called the direct product of the family{Hj}j∈J of groups.

To further discover, let’s single out for some jn ∈ J an Hjn ∈ H. Then take a
subgroup shown as NHjn

of all α’s in G∗ such that

αjn,h (A) =
⎧⎪⎪⎨⎪⎪⎩
ǫ (A) = eA for A ∈ H/ {Hjn}
h for A =Hjn where h ∈ Hjn

This subgroup is normal in G∗.
To appreciate this fact, we need to show taking any β ∈ G∗ we get β−1αβ ∈ NHjn

for α ∈ NHjn
. First, assume value of β for some i ≠ j is gi and is also equal to hj

for Hjn . Then β
−1αβ is

(β−1αβ)jn,h (A) =
⎧⎪⎪⎨⎪⎪⎩
ǫ (A) = g−1i eAgi = eA for A ∈ H/ {Hjn}
h−1j hhj = h′ for A =Hjn where h′ ∈ Hjn

Then assume value of β for some i ≠ j is gi and is ej for Hjn . Then β
−1αβ is

(β−1αβ)jn,h (A) =
⎧⎪⎪⎨⎪⎪⎩
ǫ (A) = g−1i eAgi = eA for A ∈ H/ {Hjn}
e−1j hej = h for A =Hjn where h ∈ Hjn

Therefore, β−1αβ is in NHjn
and NHjn

is a normal subgroup.

Show by HN = {NHj
}
j∈J

the collection of all normal subgroups obtained in this way

from eachHj , j ∈ J . When we have normal subgroups such as H1 and H2 then their
set-multiplication, H1H2, has a meaning. We have to overload usage of∏ notation,
regretfully, to be used for this set multiplication, too. At this point, question arises
that, what is ∏HN = ∏j∈J {NHj

}? A little effort shows that this coincides with
G∗. That is we could factor G∗ into its normal subgroups. Remember G∗ was
a subgroup of the full direct product group G of the family of groups Hj . Now
remove the normal subgroup NHjn

corresponding to the singled out Hjn from HN

and show the resulted collection by HH̄jn
(please note that there is a bar over H

to show that it is removed; that is, H̄jn). Next, set-multiply the normal subgroups
of this collection shown as N∗jn =∏HH̄jn

(had N∗jn been a finite set-multiplication

then N∗jn = Nj1Nj2⋯Njn−1Njn+1⋯Njm). Hence, N∗jn is the set of all α’s in G∗ such

that α (Hj) = ǫ (Hj) = eHj
for all j ∈ J .

At last, we succeed to define an isomorphism fjn from Hjn ∈ H to the normal
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subgroup NHjn
of G∗ as

fjn (h) = αjn,h

Hence, G∗ is the external free product of groups Hα∈J .
Now, assume the family N = {N∗jn}j∈J . Then ⋂N = {ǫ}
From this point on we do not use the modifier free anymore. You will see that
no such context exists. We were free to repeatedly use the same Gα as far as the
selected elements were not next to each other to reduce the length of the nomial
set. Also we imposed a further restriction to unique representation of the words.
After this point, we have Cartesian products of groups or our group are bound to
be Abelian.

Definiteion 6.2.16. External Direct Product of Groups : Assume we have a
finite number of groups Hi, i = 1, ⋯, n, n > 1. Let G = ⨉n

i=1Hi. Define a binary
operation in G to multiply g = (g1, g2, ⋯, gn) ∈ G and h = (h1, h2, ⋯, hn) ∈ G
by the rule gh = (g1, g2, ⋯, gn) (h1, h2, ⋯, hn) = (g1h1, g2h2, ⋯, gnhn). With this
definition G is a group if we define unity (neutral) element as e = (e1, e2, ⋯, en) and
the unit (inverse) element of g ∈ G as g−1 = (g1, g2, ⋯, gn)−1 = (g−11 , g−12 , ⋯, g−1n ).
We show it by G =∏n

i=1Hi.

Definiteion was for the finite number of groups, created by the Cartesian prod-
uct of an indexed family of groups.
It remains to show that the before mentioned definition is consistence with the
previous discussion regarding full direct product of groups.
First remember definition 2.7.6 of Cartesian product for a family of sets. We showed
that for a finite number of sets that definition coincides with the traditional defini-
tion of a Cartesian product.
Assume K is a set of mappings

α ∶ {Hi ∣ i = 1, ⋯, n, n > 1}Ð→ n

⋃
i=1

Hi, n > 1
Hi z→ h where h ∈ Hi for each i

Definiteion 6.2.17. Internal Direct Product of Subgroups : Assume we have a
finite number of subgroups Hi, i = 1, ⋯, n, n > 1 of group G. Then G is said to
be the internal direct product of Hi, i = 1, ⋯, n, n > 1 of group G if there exist an
isomorphism φ ∶∏n

i=1Hi Ð→ G such that (h1, h2, ⋯, hn)φ = h1h2⋯hn.

It is possible to prove that with this definition each element h ∈ G can uniquely
be written as the product h = h1h2⋯hn, where hi ∈ Hh. Hence internal direct
product of subgroups is restriction of definition of free product of subgroups (6.2.14)
from an indexed family of unknown number of subgroups to a finite number of
subgroups.

Definiteion 6.2.18. Internal (Abelian) Sum of Subgroups : Suppose G is an
Abelian group and {Hα}α∈J is an indexed family of subgroups of G that generates
G (see, 6.2.8). G is said to be the internal (Abelian) sum of the family of its
subgroups {Hα}α∈J . We show it by G =⊕α∈J Hα.
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Note that nomial representing any g ∈ G in terms of hα ∈ Hα is a reduced
nomial already, and has a unique participation of each Hα since G is Abelian.

Definiteion 6.2.19. External (Abelian) Sum of Groups : Assume we have a
group G and a family of groups Hα∈J indexed by J , not subgroups of G. Suppose
the family of injections iα ∶ Hα Ð→ G is a family of monomorphisms, such that G
is the direct sum of iα(Hα) (check that they are unity-disjoint). Then, we say G is
the external direct sum of the family Hα. This is the same as external free product
of groups (6.2.15) but for the Abelian groups. For Abelian groups terminology uses
“sum” instead of “product”

Definiteion 6.2.20. External Direct Sum of Groups : Assume we have a finite
number of Abelian groups Hi, i = 1, ⋯, n, n > 1. Let G =H1×H2×⋯×Hn. Define a
binary operation in G to multiply g = (g1, g2, ⋯, gn) ∈ G and h = (h1, h2, ⋯, hn) ∈ G
by the rule gh = (g1, g2, ⋯, gn) (h1, h2, ⋯, hn) = (g1h1, g2h2, ⋯, gnhn). This is the
same as external direct product of groups (6.2.16) but for the Abelian groups. For
Abelian groups terminology uses “sum” instead of “product”

Definiteion 6.2.21. Internal Direct Sum of Subgroups : Assume we have a finite
number of subgroups Hi, i = 1, ⋯, n, n > 1 of Abelian group G. Then G is said to
be the internal direct sum of Hi, i = 1, ⋯, n, n > 1 of group G if there exist an
isomorphism φ ∶∏n

i=1Hi Ð→ G such that (h1, h2, ⋯, hn)φ = h1h2⋯hn. This is the
same as internal free product of subgroups (6.2.17) but for the Abelian groups. For
Abelian groups terminology uses “sum” instead of “product”

Notation 1. External Free Product of Groups : This, generally, is shown by

G =
∗

∏
α∈J

Hα

Notation 2. External Abelian Sum of Groups : This, for Abelian groups, is
shown by

G =
∗

⊕
α∈J

Hα

In such a context it is called external Abelian sum of the groups

Notation 3. External Direct Product of Groups : This, generally, is shown
by

G =
n

∏
i=1

Hi

Notation 4. External Direct Sum of Groups : This, for Abelian groups, is
shown by

G =
n

⊕
i=1

Hi

In such a context it is called external direct sum of the groups

Remark 6.2.4. The following notation is reserved for tensor products

G =
n

⊗
i=1

Hi

That could be applied to tensor product of Abelian groups too.

Remark 6.2.5. Summing up we have
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(1) Group generated by certain indexed family of its subgroups (internal)
(2) (Internal) free product group generated by certain unity-joint indexed family of its own

subgroups (union)
(3) External free product of (external family of) groups (monomorphism is involved)

(union)
(4) External direct product of (external finite number of) groups (a new group is generated

by Cartesian product)
(5) Internal direct product of subgroups (first we make the external direct product of

subgroups then if isomorphism exists, a group already exist) (Cartesian product)
(6) Internal Abelian sum of subgroups (abelian similar to free product group generated by

certain unity-joint indexed family of its subgroups) (union)
(7) External Abelian sum of (external family of) groups (union)
(8) External direct sum of groups (external direct product of groups,Cartesian but abelian

a new group is generated) (Cartesian product)
(9) Internal direct sum of subgroups (first we make the external direct sum of subgroups

then if isomorphism exists, a group already exist) (Cartesian product)
(10) Set product of subgroups is not generally a group except for Abelian groups
(11) Join of subgroups is a group

Definiteion 6.2.22. Set Product of Subgroups : Set product of two subgroups
H and K of G is defined as the set HK = {hk ∣∀h ∈H, and, ∀k ∈K}. This is not
necessarily a subgroup.

Take a ∈ HK and b ∈ HK then a = h1k1 and b = h2k2 and ab = h1k1h2k2. This,
generally, cannot be expressed as hk for some h ∈ H and some k ∈ K, except that
G to be Abelian and h1k1h2k2 = h1h2k1k2 = h3k3. This can be restricted to the
condition that if only elements of H and K, at least should commute with each
other.

Definiteion 6.2.23. Join (Least) of Subgroups : Assume H and K are two sub-
groups of G. Join or least of these two subgroup is shown by H ∨K is defined as the
intersection of all subgroups of G that contain the set HK = {hk ∣∀h ∈H, ∀k ∈K}.

Remark 6.2.6. A group G is the internal direct product of its subgroups H and K if and
only if all these three conditions are satisfied.

(1) G =H ∨K
(2) kh = hk ∣∀h ∈H, and, ∀k ∈K
(3) H and K are unity-disjoint; that is, H ∩K = e
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G-set, 48
GX−group, 49
K -Algebra, 57

K -Vector SpaceK -Vector Space, 55
R-Algebra, 54

R-Module, 54

Xg−set, 48
p-group, 47

Abelian Group, 45

Action of a Group on a Set, 48

Addition

Arithmetic, 7
Algebra

Boolean, 40

Boolean in a Lattice, 25
Finite Union, 40

Infinite Union, 41

On Collection of Sets, 40
σ−algebra, 41
σ −M, 41

Array of Binary Operations, 49

Associative, 43
Associative division K -AlgebraAssociative

division K -Algebra, 58

Associative division R-Algebra, 54

Attaching Map, 29
Automorphism, 45

Axiom of Choice, 16, 26, 42

Binary Operation, 43

Binary Operations
Array of, 49

Boolean

Algebra, 25, 40

Borel
Field, 40

Box, 34

Canonical Map, 28
Cartesian Product, 7

Generalised, 34

Category

Epimorphism, 59

Left Cancellation, 59

Monomorphism, 59

Right Cancellation, 59

Center of Group, 47

Centralizer, 47

in a Group, 47

Chain, 23

Chart Map, 75

Class

Monotone, 41

Closed, 43

Co-vector, 18

Collection of Sets

M−partition, 26
Anti-chain, 25

Base, 25

Chain, 26

Complete Family, 25

Countable Partition, 26

Dissection, 26

Down-set, 25

Filter, 25

Finite Partition, 26

Ideal, 25

Maximal Chain, 26

Net, 33

Refinement, 25

Up-set, 25

Commutative, 43

Commutative R-Module, 54

Commutator, 46

in a Group, 46

Commutator Subgroup, 46

Composition Series, 47

Cone

As a Quotient Set, 27

Congruence, 30

Coordinate Map, 75

Coordinate System, 75

Coset

Left, 46

Right, 46

Cosets of Ideal, 52
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Decreasing Sequence of Sets, 41
Dedekind Cut, 37

Disjoint Union, 36
Division Ring, 49

Dual
f−dual, 14

Endo-epimorphism, 45

Endo-isomorphism, see also Automorphism
Endo-monomorphism, 45
EndoMorphism, 44

Endomorphism, 45
Epimorphism, 44
Equivalence Class, 26

Factor Group, 46
Factors of Subnormal Series, 47

Field, 50, 55
Borel, 40
Finite Union, 40

Infinite Union, 40
Kuratowsky, 40
On Collection of Sets, 40

σ−ring, 40
σ −M, 40

Fixed Point, 28

Form, 18
Free

Collection, 4

Function
Co-vectors, 18

Definiteion of, 17
Forms, 18
Kernel of, 18

Functional, 56

Gluing, 17
Group, 45

H -conjugates of Subsets, 47
p-group, 47
Abelian, 45

Center of, 47
Composition Series, 47

Conjugates of Subsets, 47
Factor, 46
Factors of Subnormal Series, 47

Nilpotent, 47
Ordered, 48
Quotient, 46

Riesz, 48
Simple, 46
Solvable, 47

Subnormal Series, 47
Sylow p-group, 47
Upper Central Series, 47

Group Natural Map, 52
Groupoid, 45

HomoMorphism, 44

Homomorphism, 44

Ideal, 50

Ideals
Addition of, 51

Generated by a Subset, 52
Multiplication of, 52
Principal, 52

Idempotent Element, 44
Identification, 27
Identifying Map, 28

Increasing Sequence of Sets, 41
Indexed Family of Sets, 33
Indexing Map, 33

Infimum, 41
Limit, 42

Sequence of Sets, 41
Inner Products in K -Vector Space, 58
Inner Products in R-Module, 55

Integer Numbers Z

Construction of, 30
Integral Domain, 49

Intersection, 3
Inverse Element, see also Unit
Involutary Element, see also Involution

Involution, 44
Isomorphism, 44

J−power, 33
J−tuple, 33

Kernel

of Morphism, 44
Kuratowski, 7

Identifying Map, 28

Kuratowsky
Field, 40

Lattice, 24

Boolean Algebra, 25
Complement of an Element, 24
Complete, 25

Cover, 23
Distributive, 25

Greatest Lower Bound, 23
Infimum, 23
Infinite Distributive, 25

Join, 24
Least Upper Bound, 23
Locale/Frame, 25

Lower Bound, 23
Maximum of, 24
Meetaximum of, 24

Minimum of, 24
Orthocomplemented, 25
Orthocomplemention Mapping, 24

Supremum, 23
Upper Bound, 23

Left R-Module, 54
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Left Cancellation Law, 43

Limit, 42

Sequence of Sets, 42
Limit Infimum

Sequence of Sets, 42

Limit Supremum

Sequence of Sets, 42
Linear Combination, 56

Linear Independence, 57

Map

Canonical, 28

Indexing, 33

Parameterizing, 35
Projection, 35

Mapping, 9

Bijective, 14

Co-domain, 10

Commutative Diagrams, 16
Composition of, 15

Degenerate Cases, 15

Domain of, 10

Embedding, 16
Endo-epimorphism, 45

Endo-isomorphism, see also

Automorphism

Endomonomorphism, 45

Endomorphism, 45
Epimorphism, 44

Extension of, 15

Function, 17

Gluing, 17
Graph of, 11

Homomorphism, 44

Identity, 15

Image of, 11

Imbedding, 16
Inclusion, 15

Injective, 12

Inverse, 16

Inverse Image of, 11
Invertible, 17

Isomorphism, 44

Iteration of, 17

Monomorphism, 44
Oder Preserving, 23

One-one, 12

Onto, 12

Operator, 14
Orthocomplemention, 24

Permutation, 14

Power Set, 15

Product of, 19

Range of, 10
Restriction of, 15

Retraction, 15

Similarity, 23

Structure Preserving, 44

Surjective, 11

Maximal Ideal, 53

Modulus, 15

Monoid, 45

Monomorphism, 44

Monotone Class, 41

Monotone Sequence of Sets, 41

Morphism, 44

n-ary Operation, 43

Natural Numbers

Order, 22

Neutral Element, see also Unity

Nilpotent
Group, 47

Nilpotent Element, 44

Normalizer, 47

in a Group, 47

Normalizer of a Subgroup, 47

Numbers

Natural, 6

Operator, 14

n−ary, 14
Degenerate Case, 14

Order, 22

Strict, 22

Well ordering, 24

Ordered Group, 48

Ordered Pair, 7

Parameterizing Map, 35

Permutation, 14, 61

Cyclic, 63

Even, 62

Inversion, 62

Inversions

Number of, 62

Odd, 62
Pre-set, 14

Prime Ideal, 53

Principal Ideal Domain, 53

Product

Cartesian, 7

Degenerate Cases, 8

Product Map, 19

Product Space, 35

Projection Map, 35

Projective Geometry

Incidence, 9

Q

Construction, 33

Quotient

Group, 46

Quotient Group R/I , 52

Quotient Ring (R/I , [⊕, ⊗]), 53

Quotient Set, 27, 28
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R

Construction, 37

Rational Numbers
Construction of, 33

Real Numbers R, 37

Regular Element, 44

Relation, 8
A-transitive, 22

Anti-symmetric, 21

Congruence, 30

Graph of, 9
Incidence, 9

Irreflexive, 21

Order, 22

Reflexive, 21
Strict Order, 22

Symmetric, 21

Transitive, 21

Trichotomy, 22
Retraction, 15

Riesz Group, 48

Right R-Module, 54

Right Cancellation Law, 43
Ring, 49

Boolean Ring, 39

Division Ring, 49

Finite Union, 39
Ideal, 50

Proper Ideal, 51

Infinite Union, 40

On Collection of Sets, 39
σ−ring, 40

σ −M, 40

Simple, 51

Ringoid, 49

σ−algebra
On Collection of Sets, 41

σ−field

On Collection of Sets, 40

σ−ring
On Collection of Sets, 40

σ −M (Algebra)

On Collection of Sets, 41

σ −M (Field)

On Collection of Sets, 40
σ −M (Ring)

On Collection of Sets, 40

Semi-group, 45

Semi-group (R/I , ⊗), 53
Semi-ring, 39

Von Neumann, 39

Set

f−dual, 14
Co-saturated, 13

Degenerated, 5

Dominant, 22

Inductive, 6

Modulus, 15
of Integers Z

Construction, 30
of Rationals Q

Construction, 33
Partially Ordered, 22
Power, 4

Pre-ordered, 22
Pre-set, 14
Quotient, 27
Saturated, 12

Submodulus, 15
Totally Ordered, 22

Sets
Decreasing Sequence of, 41
Increasing Sequence of, 41

Indexed Family of, 33
Monotone Sequence of, 41

Simple Group, 46
Skew Field, see also Division Ring

Structure, 43
Structure Preserving Mapping, see also

Morphism
Subgroup, 45

Commutator, 46
Cyclic, 46

Finitely Generated, 45
Generated by a Subset, 45
Index of, 46
Normal, 46

Normalizer of, 47
Submodulus, 15
Subnormal Series, 47
Subring, 50
Successor, 5

Supremum, 41
Limit, 42
Sequence of Sets, 41

Sylow p-group, 47

Symmetric Group, 61
Symmetric Group of degree n, 61
Symmetric Monoid, 61

Union, 3
Disjoint, 36

Unit, 44
Unity, 44
Upper Central Series, 47

Vector
Decomposing, 56

Vector Space

Span, 57
Von Neumann Semi-ring, 39

Z

Construction, 30
Z/nZ

Construction of, 32
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Zn

Construction of, 30
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